Biology:FAM73B

From HandWiki
Short description: Protein-coding gene in the species Homo sapiens


A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

The family with sequence similarity 73, member B, also known as FAM73B, is a human gene.[1]

Model organisms

Model organisms have been used in the study of FAM73B function. A conditional knockout mouse line, called Fam73btm1a(KOMP)Wtsi[10][11] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[12][13][14]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[8][15] Twenty four tests were carried out on mutant mice and six significant abnormalities were observed. Homozygous mutant animals had a decreased body weight, altered body composition, abnormal tooth morphology, hypoalbuminemia, decreased bone mineral content and strength, and an increased susceptibility to bacterial infection.[8]

References

  1. "Entrez Gene: family with sequence similarity 73, member B". https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=84895. 
  2. "Body weight data for Fam73b". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MBDR/weight-curves/. 
  3. "DEXA data for Fam73b". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MBDR/body-composition-dexa/. 
  4. "Radiography data for Fam73b". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MBDR/x-ray-imaging/. 
  5. "Clinical chemistry data for Fam73b". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MBDR/plasma-chemistry/. 
  6. "Salmonella infection data for Fam73b". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MBDR/salmonella-challenge/. 
  7. "Citrobacter infection data for Fam73b". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MBDR/citrobacter-challenge/. 
  8. 8.0 8.1 8.2 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  9. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  10. "International Knockout Mouse Consortium". http://www.knockoutmouse.org/martsearch/search?query=Fam73b. 
  11. "Mouse Genome Informatics". http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4362858. 
  12. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M. et al. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMID 21677750. 
  13. Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  14. "A Mouse for All Reasons". Cell 128 (1): 9–13. 2007. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  15. "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. 2011. doi:10.1186/gb-2011-12-6-224. PMID 21722353. 

Further reading