Biology:MTFMT

From HandWiki
A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

Mitochondrial methionyl-tRNA formyltransferase is a protein that in humans is encoded by the MTFMT gene.[1]

The protein encoded by this nuclear gene localizes to the mitochondrion, where it catalyzes the formylation of methionyl-tRNA.[1] Recessive-type mutations in MTFMT have been shown to cause mitochondrial disease.[2]

Model organisms

Model organisms have been used in the study of MTFMT function. A conditional knockout mouse line, called Mtfmttm1a(KOMP)Wtsi[7][8] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[9][10][11]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[5][12] Twenty six tests were carried out on mutant mice and two significant abnormalities were observed.[5] During gestation homozygous mutant embryos displayed lethal growth retardation and oedema. In a separate study, no homozygous animals were observed at weaning. The remaining tests were carried out on adult heterozygous mutant animals, but no further abnormalities were seen.[5]

References

  1. 1.0 1.1 "Entrez Gene: Mitochondrial methionyl-tRNA formyltransferase". https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=123263. 
  2. Tucker, E. J.; Hershman, S. G.; Köhrer, C.; Belcher-Timme, C. A.; Patel, J.; Goldberger, O. A.; Christodoulou, J.; Silberstein, J. M. et al. (2011). "Mutations in MTFMT Underlie a Human Disorder of Formylation Causing Impaired Mitochondrial Translation". Cell Metabolism 14 (3): 428–434. doi:10.1016/j.cmet.2011.07.010. PMID 21907147. 
  3. "Salmonella infection data for Mtfmt". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MBFN/salmonella-challenge/. 
  4. "Citrobacter infection data for Mtfmt". Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/mouseportal/phenotyping/MBFN/citrobacter-challenge/. 
  5. 5.0 5.1 5.2 5.3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x. 
  6. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  7. "International Knockout Mouse Consortium". http://www.knockoutmouse.org/martsearch/search?query=Mtfmt. 
  8. "Mouse Genome Informatics". http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4362485. 
  9. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M. et al. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMID 21677750. 
  10. Dolgin E (June 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  11. "A mouse for all reasons". Cell 128 (1): 9–13. January 2007. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  12. "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. 2011. doi:10.1186/gb-2011-12-6-224. PMID 21722353. 

Further reading

  • Takeuchi, N.; Kawakami, M.; Omori, A.; Ueda, T.; Spremulli, L. L.; Watanabe, K. (1998). "Mammalian mitochondrial methionyl-tRNA transformylase from bovine liver. Purification, characterization, and gene structure". The Journal of Biological Chemistry 273 (24): 15085–15090. doi:10.1074/jbc.273.24.15085. PMID 9614118.