Biology:Penicillium roqueforti

From HandWiki
Short description: Species of fungus

Penicillium roqueforti
Blue Stilton Penicillium.jpg
Blue Stilton cheese, showing the blue-green mold veins produced by Penicillium roqueforti
Scientific classification edit
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Penicillium
Species:
P. roqueforti
Binomial name
Penicillium roqueforti
Thom (1906)
Synonyms[4]
  • Penicillium roqueforti var. weidemannii Westling (1911)[1]
  • Penicillium weidemannii (Westling) Biourge (1923)[2]
  • Penicillium gorgonzolae Weid. (1923)
  • Penicillium roqueforti var. viride Datt.-Rubbo (1938)[3]
  • Penicillium roqueforti var. punctatum S.Abe (1956)
  • Penicillium conservandi Novobr. (1974)

Penicillium roqueforti is a common saprotrophic fungus in the genus Penicillium. Widespread in nature, it can be isolated from soil, decaying organic matter, and plants.

The major industrial use of this fungus is the production of blue cheeses, flavouring agents, antifungals, polysaccharides, proteases, and other enzymes. The fungus has been a constituent of Roquefort, Stilton, Danish blue, Cabrales, Gorgonzola, and other blue cheeses. Other blue cheeses are made with Penicillium glaucum.

Classification

First described by American mycologist Charles Thom in 1906,[5] P. roqueforti was initially a heterogeneous species of blue-green, sporulating fungi. They were grouped into different species based on phenotypic differences, but later combined into one species by Kenneth B. Raper and Thom (1949). The P. roqueforti group got a reclassification in 1996 due to molecular analysis of ribosomal DNA sequences. Formerly divided into two varieties―cheese-making (P. roqueforti var. roqueforti) and patulin-making (P. roqueforti var. carneum)―P. roqueforti was reclassified into three species: P. roqueforti, P. carneum, and P. paneum.[6] The complete genome sequence of P. roqueforti was published in 2014.[7]

Description

As this fungus does not form visible fruiting bodies, descriptions are based on macromorphological characteristics of fungal colonies growing on various standard agar media, and on microscopic characteristics. When grown on Czapek yeast autolysate agar or yeast-extract sucrose (YES) agar, P. roqueforti colonies are typically 40 mm in diameter, olive brown to dull green (dark green to black on the reverse side of the agar plate), with a velutinous texture. Grown on malt extract agar, colonies are 50 mm in diameter, dull green in color (beige to greyish green on the reverse side), with arachnoid (with many spider-web-like fibers) colony margins.[8] Another characteristic morphological feature of this species is its production of asexual spores in phialides with a distinctive brush-shaped configuration.[9][10][11]

Evidence for a sexual stage in P. roqueforti has been found, based in part on the presence of functional mating-type genes and most of the important genes known to be involved in meiosis.[12] In 2014, researchers reported inducing the growth of sexual structures in P. roqueforti, including ascogonia, cleistothecia, and ascospores. Genetic analysis and comparison of many different strains isolated from various environments around the world indicate that it is a genetically diverse species.[13]

P. roqueforti is known to be one of the most common spoilage molds of silage.[14][15][16][17][18] It is also one of several different moulds that can spoil bread.

Uses

The chief industrial use of this species is the production of blue cheeses, such as its namesake Roquefort,[19] Bleu de Bresse, Bleu du Vercors-Sassenage, Brebiblu, Cabrales, Cambozola (Blue Brie), Cashel Blue, Danish blue, Swedish Ädelost, Polish Rokpol made from cow's milk, Fourme d'Ambert, Fourme de Montbrison, Lanark Blue, Shropshire Blue, and Stilton, and some varieties of Bleu d'Auvergne and Gorgonzola. (Other blue cheeses, including Bleu de Gex and Rochebaron, use Penicillium glaucum.)

When placed into cream and aerated, P. roqueforti produces concentrated blue cheese flavoring, a type of enzyme-modified cheese.[20] A similar flavoring can be produced using other sources of fatty acids such as coconut oil.[21]

Strains of the microorganism are also used to produce compounds that can be employed as antibiotics, flavours, and fragrances,[22] uses not regulated under the U.S. Toxic Substances Control Act. Its texture is chitinous.

Secondary metabolites

Considerable evidence indicates that most strains are capable of producing harmful secondary metabolites (alkaloids and other mycotoxins) under certain growth conditions.[23][24][25][26] Aristolochene is a sesquiterpenoid compound produced by P. roqueforti, and is likely a precursor to the toxin known as PR toxin, made in large amounts by the fungus.[27] PR-toxin has been implicated in incidents of mycotoxicoses resulting from eating contaminated grains.[25][28] However, PR toxin is not stable in cheese and breaks down to the less toxic PR imine.[29]

Secondary metabolites of P. roqueforti, named andrastins A–D, are found in blue cheese. The andrastins inhibit proteins involved in the efflux of anticancer drugs from multidrug-resistant cancer cells.[30]

P. roqueforti also produces the neurotoxin roquefortine C.[31][32] However, the levels of roquefortine C in cheese made from it is usually too low to produce toxic effects. The organism can also be used for the production of proteases and specialty chemicals, such as methyl ketones, including 2-heptanone.[33]

See also

References

  1. Westling R. (1911). "Über die grünen Spezies der Gattung Penicillium" (in de). Arkiv før Botanik (1): 71. 
  2. Biourge P. (1923). "Les moissisures du groupe Penicillium Link" (in fr). La Cellule 33: 7–331 (see pp. 203–4). 
  3. Dattilo-Rubbo S. (1938). "The taxonomy of fungi of blue-veined cheese". Transactions of the British Mycological Society 22 (1–2): 174–81. doi:10.1016/s0007-1536(38)80015-2. 
  4. "GSD Species Synonymy: Penicillium roqueforti Thom". Species Fungorum. CAB International. http://www.speciesfungorum.org/GSD/GSDspecies.asp?RecordID=213525. 
  5. Thom C. (1909). "Fungi in cheese ripening; Camembert and Roquefort". U.S.D.A. Bureau of Animal Industry Bulletin 82: 1–39 (see p. 36). 
  6. "Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles". Microbiology 142 (3): 541–9. 1996. doi:10.1099/13500872-142-3-541. PMID 8868429. 
  7. "Multiple recent horizontal transfers of a large genomic region in cheese making fungi". Nature Communications 5: 2876. 2014. doi:10.1038/ncomms3876. PMID 24407037. Bibcode2014NatCo...5.2876C. 
  8. "Morphological and molecular characterisation of Penicillium roqueforti and P. paneum isolated from baled grass silage". Mycol. Res. 112 (Pt 8): 921–32. August 2008. doi:10.1016/j.mycres.2008.01.023. PMID 18554890. 
  9. "Penicillin: II. Natural Variation and Penicillin Production in Penicillium notatum and Allied Species". J. Bacteriol. 48 (6): 639–59. December 1944. doi:10.1128/JB.48.6.639-659.1944. PMID 16560880. 
  10. Raper KB (1957). "Nomenclature in Aspergillus and Penicillium". Mycologia 49 (5): 644–662. doi:10.2307/3755984. 
  11. "The taxonomic situation in the hyphomycete genera Penicillium, Aspergillus and Fusarium". Antonie van Leeuwenhoek 50 (5–6): 815–24. 1984. doi:10.1007/BF02386244. PMID 6397143. 
  12. "Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti". PLOS ONE 7 (11): e49665. 2012. doi:10.1371/journal.pone.0049665. PMID 23185400. Bibcode2012PLoSO...749665R. 
  13. "Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti ". Evolutionary Applications 7 (4): 433–41. 2014. doi:10.1111/eva.12140. PMID 24822078.  open access
  14. Skaar I. (1996). Mycological survey and characterisation of the mycobiota of big bale grass silage in Norway. PhD thesis, Norwegian College of Veterinary Medicine, Oslo.
  15. "Incidence of Penicillium roqueforti and roquefortine C in silages". Journal of the Science of Food and Agriculture 76 (4): 565–572. 2008. doi:10.1002/(SICI)1097-0010(199804)76:4<565::AID-JSFA990>3.0.CO;2-6. 
  16. Nielsen KF; M.W. Sumarah; Frisvad JC; Miller JD (2006). "Production of metabolites from the Penicillium roqueforti complex". Journal of Agricultural and Food Chemistry 54 (10): 3756–3763. doi:10.1021/jf060114f. PMID 19127756. 
  17. "Microbiological and molecular determination of mycobiota in fresh and ensiled maize silage". Mycologia 99 (2): 269–78. 2007. doi:10.3852/mycologia.99.2.269. PMID 17682779. 
  18. "Molecular Identification of Species from the Penicillium roqueforti Group Associated with Spoiled Animal Feed". Appl. Environ. Microbiol. 66 (4): 1523–6. April 2000. doi:10.1128/AEM.66.4.1523-1526.2000. PMID 10742236. Bibcode2000ApEnM..66.1523B. 
  19. "Enzymes of Penicillium roqueforti involved in the biosynthesis of cheese flavour". Crit Rev Food Sci Nutr 8 (2): 191–228. November 1976. doi:10.1080/10408397609527222. PMID 21770. 
  20. Zafer Erbay; Pelin Salum; Kieran N. Kilcawley (2021). "Enzyme Modified Cheese". Agents of Change: Enzymes in Milk and Dairy Products. Food Engineering Series. doi:10.1007/978-3-030-55482-8. ISBN 978-3-030-55481-1. 
  21. Raines, Jason (1 August 2012). Factors Affecting the Production of Concentrated Blue Cheese Flavorings (MSc). Clemson University.
  22. (Sharpell, 1985)
  23. Möller, T.; Akerstrand, K.; Massoud, T. (1997). "Toxin-producin species of Penicillium and the development of mycotoxins in must and homemade wine". Nat. Toxins 5 (2): 86–9. doi:10.1002/(SICI)(1997)5:2<86::AID-NT6>3.0.CO;2-7. PMID 9131595. 
  24. "Roquefortine C occurrence in blue cheese". Journal of Food Protection 64 (2): 246–51. February 2001. doi:10.4315/0362-028x-64.2.246. PMID 11271775. 
  25. 25.0 25.1 "Mycotoxin-forming ability of two Penicillium roqueforti strains in blue moldy tulum cheese ripened at various temperatures". Journal of Food Protection 67 (3): 533–5. March 2004. doi:10.4315/0362-028X-67.3.533. PMID 15035369. 
  26. "Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland". Journal of Agricultural and Food Chemistry 54 (24): 9268–76. November 2006. doi:10.1021/jf0621018. PMID 17117820. https://backend.orbit.dtu.dk/ws/files/2986500/kristian.pdf. 
  27. "Aristolochene synthase. Isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Ari1) from Penicillium roqueforti". Journal of Biological Chemistry 268 (6): 4543–8. February 1993. doi:10.1016/S0021-9258(18)53644-9. PMID 8440737. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=8440737. Retrieved 3 December 2008. 
  28. "Acute toxicity of PR toxin, a mycotoxin from Penicillium roqueforti". Toxicon 20 (2): 433–41. 1982. doi:10.1016/0041-0101(82)90006-X. PMID 7080052. 
  29. Siemens, Zawitowski J (1993). "Occurrence of PR imine, a metabolite of Penicillium roqueforti, in blue cheese". Journal of Food Protection 56 (4): 317–319. doi:10.4315/0362-028X-56.4.317. PMID 31091623. 
  30. "Andrastins A-D, Penicillium roqueforti Metabolites consistently produced in blue-mold-ripened cheese". Journal of Agricultural and Food Chemistry 53 (8): 2908–13. April 2005. doi:10.1021/jf047983u. PMID 15826038. 
  31. SCBT. Roquefortine - A potent neurotoxin produced most notably by Penicillium species. http://www.scbt.com/datasheet-202323-roquefortine-c.html. Retrieved 17 May 2013. 
  32. "Penicillium roqueforti Final Risk Assessment". United States Environmental Protection Agency. 29 April 2015. http://www.epa.gov/oppt/biotech/pubs/fra/fra008.htm. 
  33. "Methyl-ketone production by Ca-alginate/Eudragit RL entrapped spores of Penicillium roqueforti". Enzyme and Microbial Technology 11 (2): 106–112. 1989. doi:10.1016/0141-0229(89)90068-9. 

External links

This article is based on text originally from a report of the United States Environmental Protection Agency.

Wikidata ☰ Q133247 entry