Biology:Recombinant AAV mediated genome engineering
Recombinant adeno-associated virus (rAAV) based genome engineering is a genome editing platform centered on the use of recombinant AAV vectors that enables insertion, deletion or substitution of DNA sequences into the genomes of live mammalian cells. The technique builds on Mario Capecchi and Oliver Smithies' Nobel Prize–winning discovery that homologous recombination (HR), a natural hi-fidelity DNA repair mechanism, can be harnessed to perform precise genome alterations in mice. rAAV mediated genome-editing improves the efficiency of this technique to permit genome engineering in any pre-established and differentiated human cell line, which, in contrast to mouse ES cells, have low rates of HR.
The technique has been widely adopted for use in engineering human cell lines to generate isogenic human disease models. It has also been used to optimize bioproducer cell lines for the biomanufacturing of protein vaccines and therapeutics. In addition, due to the non-pathogenic nature of rAAV, it has emerged as a desirable vector for performing gene therapy in live patients.
rAAV Vector
The rAAV genome is built of single-stranded deoxyribonucleic acid (ssDNA), either positive- or negative-sensed, which is about 4.7 kilobases long. These single-stranded DNA viral vectors have high transduction rates and have a unique property of stimulating endogenous HR without causing double strand DNA breaks in the genome, which is typical of other homing endonuclease mediated genome editing methods.
Capabilities
Users can design a rAAV vector to any target genomic locus and perform both gross and subtle endogenous gene alterations in mammalian somatic cell-types. These include gene knock-outs for functional genomics, or the ‘knock-in’ of protein tag insertions to track translocation events at physiological levels in live cells. Most importantly, rAAV targets a single allele at a time and does not result in any off-target genomic alterations.[2] Because of this, it is able to routinely and accurately model genetic diseases caused by subtle SNPs or point mutations that are increasingly the targets of novel drug discovery programs.[2]
Applications
To date, the use of rAAV mediated genome engineering has been published in over 2100 peer reviewed scientific journals.[3] Another emerging application of rAAV based genome editing is for gene therapy in patients, due to the accuracy and lack of off-target recombination events afforded by the approach.
See also
- Biological engineering
- Genome engineering
- Homing endonuclease
- Homologous recombination
- Meganuclease
- Zinc finger nuclease
- Isogenic human disease models
- Cas9
References
- ↑ "Horizon Discovery - rAAV Gene Editing". https://www.horizondiscovery.com/gene-editing/raav.
- ↑ 2.0 2.1 Setlow (2012). Genetic Engineering: Principles and Methods, Volume 26. Springer Science & Business Media. pp. 145–187.
- ↑ "PubMed Search". https://pubmed.ncbi.nlm.nih.gov/?term=raav.
Sources
- "Mutational analysis of the tyrosine kinome in colorectal cancers". Science 300 (5621): 949. May 2003. doi:10.1126/science.1082596. PMID 12738854.
- "Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses". Nucleic Acids Res. 32 (1): 3e–3. 2004. doi:10.1093/nar/gnh009. PMID 14704360.
- "Mutational analysis of the tyrosine phosphatome in colorectal cancers". Science 304 (5674): 1164–6. May 2004. doi:10.1126/science.1096096. PMID 15155950. Bibcode: 2004Sci...304.1164W.
- Dhanushkodi A, Akano EO, Roguski EE, Xue Y, Rao SK, Matta SG, Rex, TS, & McDonald MP (2013). "A single intramuscular injection of rAAV-mediated mutant erythropoietin protects against MPTP-induced parkinsonism". Genes, Brain and Behavior 12 (2): 224–233. doi:10.1111/gbb.12001. PMID 23190369.
- "Improved methods for the generation of human gene knockout and knockin cell lines". Nucleic Acids Res. 33 (18): e158. 2005. doi:10.1093/nar/gni160. PMID 16214806.
- "Somatic mutation of EGFR catalytic domain and treatment with gefitinib in colorectal cancer". Ann. Oncol. 16 (11): 1848–9. November 2005. doi:10.1093/annonc/mdi356. PMID 16012179. http://annonc.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=16012179.
- "Kinase mutations in cancer: chinks in the enemy's armour?". Curr Opin Oncol 18 (1): 69–76. January 2006. doi:10.1097/01.cco.0000198020.91724.48. PMID 16357567.
- "Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies". Cancer Res. 67 (6): 2643–8. March 2007. doi:10.1158/0008-5472.CAN-06-4158. PMID 17363584. http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=17363584.
- "Genetic targeting of the kinase activity of the Met receptor in cancer cells". Proc. Natl. Acad. Sci. U.S.A. 104 (27): 11412–7. July 2007. doi:10.1073/pnas.0703205104. PMID 17595299. Bibcode: 2007PNAS..10411412A.
- "Knock-in of mutant K-ras in nontumorigenic human epithelial cells as a new model for studying K-ras mediated transformation". Cancer Res. 67 (18): 8460–7. September 2007. doi:10.1158/0008-5472.CAN-07-0108. PMID 17875684. http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=17875684.
- "Knock-in of oncogenic Kras does not transform mouse somatic cells but triggers a transcriptional response that classifies human cancers". Cancer Res. 67 (18): 8468–76. September 2007. doi:10.1158/0008-5472.CAN-07-1126. PMID 17875685. http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=17875685.
- "Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase". J. Cell Biol. 181 (6): 913–20. June 2008. doi:10.1083/jcb.200802076. PMID 18559665.
- "Ku70, an essential gene, modulates the frequency of rAAV-mediated gene targeting in human somatic cells". Proc. Natl. Acad. Sci. U.S.A. 105 (25): 8703–8. June 2008. doi:10.1073/pnas.0712060105. PMID 18562296. Bibcode: 2008PNAS..105.8703F.
- "Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer". J. Clin. Oncol. 26 (35): 5705–12. December 2008. doi:10.1200/JCO.2008.18.0786. PMID 19001320. http://www.jco.org/cgi/pmidlookup?view=long&pmid=19001320.
- "Replacement of normal with mutant alleles in the genome of normal human cells unveils mutation-specific drug responses". Proc. Natl. Acad. Sci. U.S.A. 105 (52): 20864–9. December 2008. doi:10.1073/pnas.0808757105. PMID 19106301. Bibcode: 2008PNAS..10520864D.
- "Knockin of mutant PIK3CA activates multiple oncogenic pathways". Proc. Natl. Acad. Sci. U.S.A. 106 (8): 2835–40. February 2009. doi:10.1073/pnas.0813351106. PMID 19196980. Bibcode: 2009PNAS..106.2835G.
- "PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies". Cancer Res. 69 (5): 1851–7. March 2009. doi:10.1158/0008-5472.CAN-08-2466. PMID 19223544. http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=19223544.
- "A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53". Proc. Natl. Acad. Sci. U.S.A. 106 (10): 3964–9. March 2009. doi:10.1073/pnas.0813333106. PMID 19225112. Bibcode: 2009PNAS..106.3964S.
- "Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells". Science 325 (5947): 1555–9. September 2009. doi:10.1126/science.1174229. PMID 19661383. Bibcode: 2009Sci...325.1555Y.
- "Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer". PLOS ONE 4 (10): e7287. 2009. doi:10.1371/journal.pone.0007287. PMID 19806185. Bibcode: 2009PLoSO...4.7287S.
- Endogenous Expression of Oncogenic PI3K Mutation Leads to Activated PI3K Signaling and an Invasive Phenotype Poster Presented at AACR/EORTC Molecular Targets and Cancer Therapeutics, Boston, USA, Nov. 2009
- "Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer". J. Clin. Oncol. 28 (7): 1254–61. March 2010. doi:10.1200/JCO.2009.24.6116. PMID 20100961. http://www.jco.org/cgi/pmidlookup?view=long&pmid=20100961.
- "Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells". PLOS Genet. 6 (2): e1000855. February 2010. doi:10.1371/journal.pgen.1000855. PMID 20195511.
- "Use of human cancer cell lines mitochondria to explore the mechanisms of BH3 peptides and ABT-737-induced mitochondrial membrane permeabilization". PLOS ONE 5 (3): e9924. 2010. doi:10.1371/journal.pone.0009924. PMID 20360986. Bibcode: 2010PLoSO...5.9924B.
- Endogenous Expression of Oncogenic PI3K Mutation Leads to accumulation of anti-apoptotic proteins in mitochondria Poster Presented at AACR 2010, Washington, D.C., USA, April. 2010
- The use of ‘X-MAN’ isogenic cell lines to define PI3-kinase inhibitor activity profiles Poster Presented at AACR 2010, Washington, D.C., USA, April. 2010
- The use of ‘X-MAN’ mutant PI3CA increases the expression of individual tubulin isoforms and promoted resistance to anti-mitotic chemotherapy drugs Poster Presented at AACR 2010, Washington, D.C., USA, April. 2010
- "Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus". J. Clin. Invest. 120 (8): 2858–66. August 2010. doi:10.1172/JCI37539. PMID 20664172.
- "Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain". Proc. Natl. Acad. Sci. U.S.A. 93 (3): 1156–60. February 1996. doi:10.1073/pnas.93.3.1156. PMID 8577732. Bibcode: 1996PNAS...93.1156K.
- "FokI dimerization is required for DNA cleavage". Proc. Natl. Acad. Sci. U.S.A. 95 (18): 10570–5. September 1998. doi:10.1073/pnas.95.18.10570. PMID 9724744. Bibcode: 1998PNAS...9510570B.
- "Zinc-finger nucleases: the next generation emerges". Mol. Ther. 16 (7): 1200–7. July 2008. doi:10.1038/mt.2008.114. PMID 18545224.
- "Design and selection of novel Cys2His2 zinc finger proteins". Annu. Rev. Biochem. 70: 313–40. 2001. doi:10.1146/annurev.biochem.70.1.313. PMID 11395410.
- "Unexpected failure rates for modular assembly of engineered zinc fingers". Nat. Methods 5 (5): 374–5. May 2008. doi:10.1038/nmeth0508-374. PMID 18446154.
- "Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification". Mol. Cell 31 (2): 294–301. July 2008. doi:10.1016/j.molcel.2008.06.016. PMID 18657511.
- "Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases". Genes Cells 15 (8): 875–85. August 2010. doi:10.1111/j.1365-2443.2010.01425.x. PMID 20604805. http://ir.lib.hiroshima-u.ac.jp/files/public/3/33718/20141016194426178764/diss_ko5478.pdf.
- "Precise genome modification in the crop species Zea mays using zinc-finger nucleases". Nature 459 (7245): 437–41. May 2009. doi:10.1038/nature07992. PMID 19404259. Bibcode: 2009Natur.459..437S.
- Ekker SC (2008). "Zinc finger-based knockout punches for zebrafish genes". Zebrafish 5 (2): 121–3. doi:10.1089/zeb.2008.9988. PMID 18554175.
- Carroll D (November 2008). "Progress and prospects: zinc-finger nucleases as gene therapy agents". Gene Ther. 15 (22): 1463–8. doi:10.1038/gt.2008.145. PMID 18784746.
- "Knockout rats via embryo microinjection of zinc-finger nucleases". Science 325 (5939): 433. July 2009. doi:10.1126/science.1172447. PMID 19628861. Bibcode: 2009Sci...325..433G.
- "Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells". Nucleic Acids Res. 33 (18): 5978–90. 2005. doi:10.1093/nar/gki912. PMID 16251401.
- "Targeted chromosomal deletions in human cells using zinc finger nucleases". Genome Res. 20 (1): 81–9. January 2010. doi:10.1101/gr.099747.109. PMID 19952142.
- Lipps, Georg, ed (2008). "Plasmids for Gene Therapy". Plasmids: Current Research and Future Trends. Caister Academic Press. ISBN 978-1-904455-35-6.
- "Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases". Nucleic Acids Res. 39 (1): 381–92. January 2011. doi:10.1093/nar/gkq787. PMID 20843781.
- "Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease". Nucleic Acids Res. 37 (16): 5405–19. September 2009. doi:10.1093/nar/gkp548. PMID 19584299.
- "Heritable targeted mutagenesis in maize using a designed endonuclease". Plant J. 61 (1): 176–87. January 2010. doi:10.1111/j.1365-313X.2009.04041.x. PMID 19811621.
- "Targeting DNA double-strand breaks with TAL effector nucleases". Genetics 186 (2): 757–61. October 2010. doi:10.1534/genetics.110.120717. PMID 20660643. PMC 2942870. http://www.genetics.org/cgi/pmidlookup?view=long&pmid=20660643.
- "TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain". Nucleic Acids Res. 39 (1): 359–72. January 2011. doi:10.1093/nar/gkq704. PMID 20699274.
- "A simple cipher governs DNA recognition by TAL effectors". Science 326 (5959): 1501. December 2009. doi:10.1126/science.1178817. PMID 19933106. Bibcode: 2009Sci...326.1501M.
- "Breaking the code of DNA binding specificity of TAL-type III effectors". Science 326 (5959): 1509–12. December 2009. doi:10.1126/science.1178811. PMID 19933107. Bibcode: 2009Sci...326.1509B.
- Stoddard BL (2005). "Homing endonuclease structure and function". Quarterly Reviews of Biophysics 38 (1): 49–95. doi:10.1017/S0033583505004063. PMID 16336743.
- "Mutations altering the cleavage specificity of a homing endonuclease". Nucleic Acids Res. 30 (17): 3870–9. September 2002. doi:10.1093/nar/gkf495. PMID 12202772.
- "Isolation and characterization of new homing endonuclease specificities at individual target site positions". J. Mol. Biol. 342 (1): 31–41. September 2004. doi:10.1016/j.jmb.2004.07.031. PMID 15313605.
- "Homing endonuclease I-CreI derivatives with novel DNA target specificities". Nucleic Acids Res. 34 (17): 4791–800. 2006. doi:10.1093/nar/gkl645. PMID 16971456.
- "Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets". J. Mol. Biol. 355 (3): 443–58. January 2006. doi:10.1016/j.jmb.2005.10.065. PMID 16310802.
- "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences". Nucleic Acids Res. 34 (22): e149. 2006. doi:10.1093/nar/gkl720. PMID 17130168.
- "Design, activity, and structure of a highly specific artificial endonuclease". Mol. Cell 10 (4): 895–905. October 2002. doi:10.1016/S1097-2765(02)00690-1. PMID 12419232.
- "Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds". Nucleic Acids Res. 38 (6): 2006–18. April 2010. doi:10.1093/nar/gkp1171. PMID 20026587.
Original source: https://en.wikipedia.org/wiki/Recombinant AAV mediated genome engineering.
Read more |