Chapman function
thumb|300px|right|Graph of ch(x, z) A Chapman function describes the integration of atmospheric absorption along a slant path on a spherical Earth, relative to the vertical case. It applies to any quantity with a concentration decreasing exponentially with increasing altitude. To a first approximation, valid at small zenith angles, the Chapman function for optical absorption is equal to
- [math]\displaystyle{ \sec(z),\ }[/math]
where z is the zenith angle and sec denotes the secant function.
The Chapman function is named after Sydney Chapman, who introduced the function in 1931.[1]
Definition
In an isothermal model of the atmosphere, the density [math]\displaystyle{ \varrho(h) }[/math] varies exponentially with altitude [math]\displaystyle{ h }[/math] according to the Barometric formula:
- [math]\displaystyle{ \varrho(h) = \varrho_0 \exp\left(- \frac h H \right) }[/math],
where [math]\displaystyle{ \varrho_0 }[/math] denotes the density at sea level ([math]\displaystyle{ h=0 }[/math]) and [math]\displaystyle{ H }[/math] the so-called scale height. The total amount of matter traversed by a vertical ray starting at altitude [math]\displaystyle{ h }[/math] towards infinity is given by the integrated density ("column depth")
- [math]\displaystyle{ X_0(h) = \int_h^\infty \varrho(l)\, \mathrm d l = \varrho_0 H \exp\left(-\frac hH \right) }[/math].
For inclined rays having a zenith angle [math]\displaystyle{ z }[/math], the integration is not straight-forward due to the non-linear relationship between altitude and path length when considering the curvature of Earth. Here, the integral reads
- [math]\displaystyle{ X_z(h) = \varrho_0 \exp\left(-\frac hH \right) \int_0^\infty \exp\left(- \frac 1H \left(\sqrt{s^2 + l^2 + 2ls \cos z} -s \right)\right) \, \mathrm d l }[/math],
where we defined [math]\displaystyle{ s = h + R_{\mathrm E} }[/math] ([math]\displaystyle{ R_{\mathrm E} }[/math] denotes the Earth radius).
The Chapman function [math]\displaystyle{ \operatorname{ch}(x, z) }[/math] is defined as the ratio between slant depth [math]\displaystyle{ X_z }[/math] and vertical column depth [math]\displaystyle{ X_0 }[/math]. Defining [math]\displaystyle{ x = s / H }[/math], it can be written as
- [math]\displaystyle{ \operatorname{ch}(x, z) = \frac{X_z}{X_0} = \mathrm e^x \int_0^\infty \exp\left(-\sqrt{x^2 + u^2 + 2xu\cos z}\right) \, \mathrm du }[/math].
Representations
A number of different integral representations have been developed in the literature. Chapman's original representation reads[1]
- [math]\displaystyle{ \operatorname{ch}(x, z) = x \sin z \int_0^z \frac{\exp\left(x (1 - \sin z / \sin \lambda)\right)}{\sin^2 \lambda} \, \mathrm d \lambda }[/math].
Huestis[2] developed the representation
- [math]\displaystyle{ \operatorname{ch}(x, z) = 1 + x\sin z\int_0^z \frac{\exp\left(x (1 - \sin z / \sin \lambda)\right)}{1 + \cos\lambda} \,\mathrm d \lambda }[/math],
which does not suffer from numerical singularities present in Chapman's representation.
Special cases
For [math]\displaystyle{ z = \pi/2 }[/math] (horizontal incidence), the Chapman function reduces to[3]
- [math]\displaystyle{ \operatorname{ch}\left(x, \frac \pi 2 \right) = x \mathrm{e}^x K_1(x) }[/math].
Here, [math]\displaystyle{ K_1(x) }[/math] refers to the modified Bessel function of the second kind of the first order. For large values of [math]\displaystyle{ x }[/math], this can further be approximated by
- [math]\displaystyle{ \operatorname{ch}\left(x \gg 1, \frac \pi 2 \right) \approx \sqrt{\frac{\pi}{2}x} }[/math].
For [math]\displaystyle{ x \rightarrow \infty }[/math] and [math]\displaystyle{ 0 \leq z \lt \pi/2 }[/math], the Chapman function converges to the secant function:
- [math]\displaystyle{ \lim_{x \rightarrow \infty} \operatorname{ch}(x, z) = \sec z }[/math].
In practical applications related to the terrestrial atmosphere, where [math]\displaystyle{ x \sim 1000 }[/math], [math]\displaystyle{ \operatorname{ch}(x, z) \approx \sec z }[/math] is a good approximation for zenith angles up to 60° to 70°, depending on the accuracy required.
See also
References
- ↑ 1.0 1.1 Chapman, S. (1 September 1931). "The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence". Proceedings of the Physical Society 43 (5): 483–501. doi:10.1088/0959-5309/43/5/302. Bibcode: 1931PPS....43..483C.
- ↑ Huestis, David L. (2001). "Accurate evaluation of the Chapman function for atmospheric attenuation". Journal of Quantitative Spectroscopy and Radiative Transfer 69 (6): 709–721. doi:10.1016/S0022-4073(00)00107-2. Bibcode: 2001JQSRT..69..709H.
- ↑ Vasylyev, Dmytro (December 2021). "Accurate analytic approximation for the Chapman grazing incidence function". Earth, Planets and Space 73 (1): 112. doi:10.1186/s40623-021-01435-y. Bibcode: 2021EP&S...73..112V.
External links
- Chapman function at Science World
- Smith, F. L.; Smith, Cody (1972). "Numerical evaluation of Chapman's grazing incidence integral ch(X,χ)". J. Geophys. Res. 77 (19): 3592–3597. doi:10.1029/JA077i019p03592. Bibcode: 1972JGR....77.3592S.
Original source: https://en.wikipedia.org/wiki/Chapman function.
Read more |