Chapman function

From HandWiki

thumb|300px|right|Graph of ch(x, z) A Chapman function describes the integration of atmospheric absorption along a slant path on a spherical Earth, relative to the vertical case. It applies to any quantity with a concentration decreasing exponentially with increasing altitude. To a first approximation, valid at small zenith angles, the Chapman function for optical absorption is equal to

[math]\displaystyle{ \sec(z),\ }[/math]

where z is the zenith angle and sec denotes the secant function.

The Chapman function is named after Sydney Chapman, who introduced the function in 1931.[1]

Definition

In an isothermal model of the atmosphere, the density [math]\displaystyle{ \varrho(h) }[/math] varies exponentially with altitude [math]\displaystyle{ h }[/math] according to the Barometric formula:

[math]\displaystyle{ \varrho(h) = \varrho_0 \exp\left(- \frac h H \right) }[/math],

where [math]\displaystyle{ \varrho_0 }[/math] denotes the density at sea level ([math]\displaystyle{ h=0 }[/math]) and [math]\displaystyle{ H }[/math] the so-called scale height. The total amount of matter traversed by a vertical ray starting at altitude [math]\displaystyle{ h }[/math] towards infinity is given by the integrated density ("column depth")

[math]\displaystyle{ X_0(h) = \int_h^\infty \varrho(l)\, \mathrm d l = \varrho_0 H \exp\left(-\frac hH \right) }[/math].

For inclined rays having a zenith angle [math]\displaystyle{ z }[/math], the integration is not straight-forward due to the non-linear relationship between altitude and path length when considering the curvature of Earth. Here, the integral reads

[math]\displaystyle{ X_z(h) = \varrho_0 \exp\left(-\frac hH \right) \int_0^\infty \exp\left(- \frac 1H \left(\sqrt{s^2 + l^2 + 2ls \cos z} -s \right)\right) \, \mathrm d l }[/math],

where we defined [math]\displaystyle{ s = h + R_{\mathrm E} }[/math] ([math]\displaystyle{ R_{\mathrm E} }[/math] denotes the Earth radius).

The Chapman function [math]\displaystyle{ \operatorname{ch}(x, z) }[/math] is defined as the ratio between slant depth [math]\displaystyle{ X_z }[/math] and vertical column depth [math]\displaystyle{ X_0 }[/math]. Defining [math]\displaystyle{ x = s / H }[/math], it can be written as

[math]\displaystyle{ \operatorname{ch}(x, z) = \frac{X_z}{X_0} = \mathrm e^x \int_0^\infty \exp\left(-\sqrt{x^2 + u^2 + 2xu\cos z}\right) \, \mathrm du }[/math].

Representations

A number of different integral representations have been developed in the literature. Chapman's original representation reads[1]

[math]\displaystyle{ \operatorname{ch}(x, z) = x \sin z \int_0^z \frac{\exp\left(x (1 - \sin z / \sin \lambda)\right)}{\sin^2 \lambda} \, \mathrm d \lambda }[/math].

Huestis[2] developed the representation

[math]\displaystyle{ \operatorname{ch}(x, z) = 1 + x\sin z\int_0^z \frac{\exp\left(x (1 - \sin z / \sin \lambda)\right)}{1 + \cos\lambda} \,\mathrm d \lambda }[/math],

which does not suffer from numerical singularities present in Chapman's representation.

Special cases

For [math]\displaystyle{ z = \pi/2 }[/math] (horizontal incidence), the Chapman function reduces to[3]

[math]\displaystyle{ \operatorname{ch}\left(x, \frac \pi 2 \right) = x \mathrm{e}^x K_1(x) }[/math].

Here, [math]\displaystyle{ K_1(x) }[/math] refers to the modified Bessel function of the second kind of the first order. For large values of [math]\displaystyle{ x }[/math], this can further be approximated by

[math]\displaystyle{ \operatorname{ch}\left(x \gg 1, \frac \pi 2 \right) \approx \sqrt{\frac{\pi}{2}x} }[/math].

For [math]\displaystyle{ x \rightarrow \infty }[/math] and [math]\displaystyle{ 0 \leq z \lt \pi/2 }[/math], the Chapman function converges to the secant function:

[math]\displaystyle{ \lim_{x \rightarrow \infty} \operatorname{ch}(x, z) = \sec z }[/math].

In practical applications related to the terrestrial atmosphere, where [math]\displaystyle{ x \sim 1000 }[/math], [math]\displaystyle{ \operatorname{ch}(x, z) \approx \sec z }[/math] is a good approximation for zenith angles up to 60° to 70°, depending on the accuracy required.

See also

References

  1. 1.0 1.1 Chapman, S. (1 September 1931). "The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence". Proceedings of the Physical Society 43 (5): 483–501. doi:10.1088/0959-5309/43/5/302. Bibcode1931PPS....43..483C. 
  2. Huestis, David L. (2001). "Accurate evaluation of the Chapman function for atmospheric attenuation". Journal of Quantitative Spectroscopy and Radiative Transfer 69 (6): 709–721. doi:10.1016/S0022-4073(00)00107-2. Bibcode2001JQSRT..69..709H. 
  3. Vasylyev, Dmytro (December 2021). "Accurate analytic approximation for the Chapman grazing incidence function". Earth, Planets and Space 73 (1): 112. doi:10.1186/s40623-021-01435-y. Bibcode2021EP&S...73..112V. 

External links