Chazy equation
From HandWiki
In mathematics, the Chazy equation is the differential equation
- [math]\displaystyle{ \frac{d^3y}{dx^3} = 2y\frac{d^2y}{dx^2} - 3 \left(\frac{dy}{dx}\right)^2. }[/math]
It was introduced by Jean Chazy (1909, 1911) as an example of a third-order differential equation with a movable singularity that is a natural boundary for its solutions.
One solution is given by the Eisenstein series
- [math]\displaystyle{ E_2(\tau) =1-24\sum \sigma_1(n)q^n= 1-24q-72q^2-\cdots. }[/math]
Acting on this solution by the group SL2 gives a 3-parameter family of solutions.
References
- Chazy, J. (1909), "Sur les équations différentielles dont l'intégrale générale est uniforme et admet des singularités essentielles mobiles", C. R. Acad. Sci. Paris (149)
- Chazy, J. (1911), "Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes", Acta Mathematica 34: 317–385, doi:10.1007/BF02393131
- "Symmetry and the Chazy equation", Journal of Differential Equations 124 (1): 225–246, 1996, doi:10.1006/jdeq.1996.0008, Bibcode: 1996JDE...124..225C
![]() | Original source: https://en.wikipedia.org/wiki/Chazy equation.
Read more |