Chemistry:3-Chlorobenzonitrile

From HandWiki
3-Chlorobenzonitrile
3-Chlorobenzonitrile.svg
Names
Other names
meta-Chlorobenzonitrile
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 212-172-6
Properties
C7H4ClN
Molar mass 137.57 g·mol−1
Appearance colorless solid
Melting point 40–41 °C (104–106 °F; 313–314 K)[1]
Hazards
GHS pictograms GHS06: ToxicGHS07: Harmful
GHS Signal word Danger
H302, H312, H319
P264, P270, P273, P280, P301+312, P302+352, P305+351+338, P312, P322, P330, P337+313, P361, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

3-Chlorobenzonitrile is an organic compound with the chemical formula ClC6H4CN. It is one of the isomers of chlorobenzonitrile.

Preparation and reactions

Typically, aryl nitriles are produced by ammoxidation.[2] 3-Chlorobenzonitrile can also be produced by dehydration of the aldoxime of 3-chlorobenzaldehyde.[3] It can also be produced by heating 3-chlorobenzylamine and iodine in ammonium acetate aqueous solution.[4]

In the presence of copper nanoparticles, 3-chlorobenzonitrile can be reduced by sodium borohydride to 3-chlorobenzylamine.[5] Some ruthenium catalyzers can catalysis the hydrolysis of 3-chlorobenzonitrile to form 3-chlorobenzamide.[6]

References

  1. Takashi Keumi; Masakazu Shimada; Toshio Morita; Hidehiko Kitajima (August 1990). "2-(Trifluoroacetyloxy)pyridine as a Mild Trifluoroacetylating Reagent of Amines and Alcohols" (in en). Bulletin of the Chemical Society of Japan 63 (8): 2252–2256. doi:10.1246/bcsj.63.2252. ISSN 0009-2673. 
  2. Pollak, Peter; Romeder, Gérard; Hagedorn, Ferdinand; Gelbke, Heinz-Peter (2000). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_363. 
  3. Stephan Enthaler; Maik Weidauer; Fanny Schröder (February 2012). "Straightforward zinc-catalyzed transformation of aldehydes and hydroxylamine hydrochloride to nitriles" (in en). Tetrahedron Letters 53 (7): 882–885. doi:10.1016/j.tetlet.2011.12.036. https://linkinghub.elsevier.com/retrieve/pii/S0040403911021666. Retrieved 2021-12-20. 
  4. Yiming Ren; Shuo Jin (2017-01-01). "Molecular iodine/aqueous NH4OAc: a green reaction system for direct oxidative synthesis of nitriles from amines". Journal of Advanced Oxidation Technologies 20 (1). doi:10.1515/jaots-2016-0175. ISSN 2371-1175. https://www.degruyter.com/document/doi/10.1515/jaots-2016-0175/html. Retrieved 2021-12-20. 
  5. Asghar Zamani; Ahmad Poursattar Marjani; Abbas Nikoo; Mojtaba Heidarpour; Ahmad Dehghan (2018-03-04). "Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction" (in en). Inorganic and Nano-Metal Chemistry 48 (3): 176–181. doi:10.1080/24701556.2018.1503676. ISSN 2470-1556. https://www.tandfonline.com/doi/full/10.1080/24701556.2018.1503676. Retrieved 2021-12-20. 
  6. Victorio Cadierno; Javier Francos; José Gimeno (2008-07-28). "Selective Ruthenium-Catalyzed Hydration of Nitriles to Amides in Pure Aqueous Medium Under Neutral Conditions" (in en). Chemistry - A European Journal 14 (22): 6601–6605. doi:10.1002/chem.200800847. PMID 18567025. https://onlinelibrary.wiley.com/doi/10.1002/chem.200800847. Retrieved 2021-12-20.