Chemistry:Antitarget
In pharmacology, an antitarget (or off-target) is a receptor, enzyme, or other biological target that, when affected by a drug, causes undesirable side-effects. During drug design and development, it is important for pharmaceutical companies to ensure that new drugs do not show significant activity at any of a range of antitargets, most of which are discovered largely by chance.[1][2]
Among the best-known and most significant antitargets are the hERG channel and the 5-HT2B receptor, both of which cause long-term problems with heart function that can prove fatal (long QT syndrome and cardiac fibrosis, respectively), in a small but unpredictable proportion of users. Both of these targets were discovered as a result of high levels of distinctive side-effects during the marketing of certain medicines, and, while some older drugs with significant hERG activity are still used with caution, most drugs that have been found to be strong 5-HT2B agonists were withdrawn from the market, and any new compound will almost always be discontinued from further development if initial screening shows high affinity for these targets.[3][4][5][6][7][8]
Agonism of the 5-HT2A receptor is an antitarget because 5-HT2A receptor agonists are associated with hallucinogenic effects.[9] According to David E. Nichols, "Discussions over the years with many colleagues working in the pharmaceutical industry have informed me that if upon screening a potential new drug is found to have serotonin 5-HT2A agonist activity, it nearly always signals the end to any further development of that molecule."[9] There are some exceptions however, for instance efavirenz and lorcaserin, which can activate the 5-HT2A receptor and cause psychedelic effects at high doses.[10][11][12]
The growth of the field of chemoproteomics has offered a variety of strategies to identify off-targets on a proteome wide scale.[13]
See also
References
- ↑ Klabunde, T.; Evers, A. (2005). "GPCR antitarget modeling: pharmacophore models for biogenic amine binding GPCRs to avoid GPCR-mediated side effects". ChemBioChem 6 (5): 876–889. doi:10.1002/cbic.200400369. PMID 15791686.
- ↑ Price, D.; Blagg, J.; Jones, L.; Greene, N.; Wager, T. (2009). "Physicochemical drug properties associated with in vivo toxicological outcomes: a review". Expert Opinion on Drug Metabolism & Toxicology 5 (8): 921–931. doi:10.1517/17425250903042318. PMID 19519283.
- ↑ De Ponti, F.; Poluzzi, E.; Cavalli, A.; Recanatini, M.; Montanaro, N. (2002). "Safety of non-antiarrhythmic drugs that prolong the QT interval or induce torsade de pointes: an overview". Drug Safety 25 (4): 263–286. doi:10.2165/00002018-200225040-00004. PMID 11994029.
- ↑ Recanatini, M.; Poluzzi, E.; Masetti, M.; Cavalli, A.; De Ponti, F. (2005). "QT prolongation through hERG K(+) channel blockade: current knowledge and strategies for the early prediction during drug development". Medicinal Research Reviews 25 (2): 133–166. doi:10.1002/med.20019. PMID 15389727.
- ↑ Raschi, E.; Vasina, V.; Poluzzi, E.; De Ponti, F. (2008). "The hERG K+ channel: target and antitarget strategies in drug development". Pharmacological Research 57 (3): 181–195. doi:10.1016/j.phrs.2008.01.009. PMID 18329284.
- ↑ Raschi, E.; Ceccarini, L.; De Ponti, F.; Recanatini, M. (2009). "hERG-related drug toxicity and models for predicting hERG liability and QT prolongation". Expert Opinion on Drug Metabolism & Toxicology 5 (9): 1005–1021. doi:10.1517/17425250903055070. PMID 19572824.
- ↑ Huang, X.; Setola, V.; Yadav, P.; Allen, J.; Rogan, S.; Hanson, B.; Revankar, C.; Robers, M. et al. (2009). "Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine2B Receptor Agonists: Implications for Drug Safety Assessment". Molecular Pharmacology 76 (4): 710–722. doi:10.1124/mol.109.058057. PMID 19570945.
- ↑ Bhattacharyya, S.; Schapira, A. H.; Mikhailidis, D. P.; Davar, J. (2009). "Drug-induced fibrotic valvular heart disease". The Lancet 374 (9689): 577–85. doi:10.1016/S0140-6736(09)60252-X. PMID 19683643.
- ↑ 9.0 9.1 "Psychedelics". Pharmacol. Rev. 68 (2): 264–355. 2016. doi:10.1124/pr.115.011478. PMID 26841800.
- ↑ "Neuropsychiatric Effects of HIV Antiviral Medications". Drug Saf 39 (10): 945–57. 2016. doi:10.1007/s40264-016-0440-y. PMID 27534750.
- ↑ "The HIV antiretroviral drug efavirenz has LSD-like properties". Neuropsychopharmacology 38 (12): 2373–84. 2013. doi:10.1038/npp.2013.135. PMID 23702798.
- ↑ "Schedules of Controlled Substances: Placement of Lorcaserin into Schedule IV". 2013-05-08. https://www.federalregister.gov/documents/2013/05/08/2013-10895/schedules-of-controlled-substances-placement-of-lorcaserin-into-schedule-iv.
- ↑ Moellering, Raymond E.; Cravatt, Benjamin F. (January 2012). "How Chemoproteomics Can Enable Drug Discovery and Development". Chemistry & Biology 19 (1): 11–22. doi:10.1016/j.chembiol.2012.01.001. ISSN 1074-5521. PMC 3312051. http://dx.doi.org/10.1016/j.chembiol.2012.01.001.
Original source: https://en.wikipedia.org/wiki/Antitarget.
Read more |