Chemistry:Bis-GMA

From HandWiki
Bis-GMA
MethmethacrylateBPA-glyc.png
Names
Preferred IUPAC name
Propane-2,2-diylbis[4,1-phenyleneoxy(2-hydroxypropane-3,1-diyl)] bis(2-methylprop-2-enoate)
Other names
Bowen monomer; Silux; Delton; NuvaSeal; Retroplast
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 216-367-7
UNII
Properties
C29H36O8
Molar mass 512.599 g·mol−1
Appearance colorless oil
Hazards
GHS pictograms GHS05: CorrosiveGHS07: Harmful
GHS Signal word Danger
H315, H317, H318, H319
P261, P264, P272, P280, P302+352, P305+351+338, P310, P321, P332+313, P333+313, P337+313, P362, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Bis-GMA (bisphenol A-glycidyl methacrylate) is a resin commonly used in dental composite, dental sealants.[1][2] and dental cement. It is the diester derived from methacrylic acid and the bisphenol A diglycidyl ether. Bearing two polymerizable groups, it is prone to form a crosslinked polymer that is used in dental restorations.[3] For dental work, highly viscous bis-GMA is mixed with aluminosilicate particles, crushed quartz and other related acrylates; changes to component ratios lead to different physical properties in the end product.[4] Bis-GMA was incorporated into composite dental resins in 1962 by Rafael Bowen.[3] Until matrix development work in the early 2000s, bis-GMA and related methacrylate monomers were the only options for organic matrix composition.[5]

Safety

Concerns have been raised about the potential for bis-GMA to break down into or be contaminated with the related compound bisphenol A.[6] However, no negative health effects of bis-GMA use in dental resins have been found.[2][7]

Composition

Salivary esterases can slowly degrade bis-GMA-based sealants, forming Bis-HPPP.[8]

References

  1. CID 15284 from PubChem. Retrieved 27 May 2022.
  2. 2.0 2.1 Ahovuo-Saloranta, Anneli; Forss, Helena; Walsh, Tanya; Nordblad, Anne; Mäkelä, Marjukka; Worthington, Helen V. (31 July 2017). "Pit and fissure sealants for preventing dental decay in permanent teeth". The Cochrane Database of Systematic Reviews 2017 (7): CD001830. doi:10.1002/14651858.CD001830.pub5. ISSN 1469-493X. PMID 28759120. 
  3. 3.0 3.1 "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2006. doi:10.1002/14356007.a08_251.pub2. 
  4. "Composite Materials: Composition, properties and clinical applications" (PDF). Schweiz Monatsschr Zahnmed 120 (11): 972–9. November 2010. PMID 21243545. https://www.sso.ch/pubmed.cfm?a=smfz-2010-11-30. Retrieved 28 May 2022. 
  5. "New Resins for Dental Composites". Journal of Dental Research 96 (10): 1085–91. 21 July 2017. doi:10.1177/0022034517720658. PMID 28732183. 
  6. "What every dentist should known about bisphenol A". General Dentistry 60 (5): 424–32. 2012. PMID 23032231. 
  7. "Bis-GMA–based resins in dentistry: are they safe?". The Journal of the American Dental Association 130 (2): 201–209. February 1999. doi:10.14219/jada.archive.1999.0169. PMID 10036843. (Subscription content?)
  8. Shokati, Babak; Tam, Laura Eva; Santerre, J. Paul; Finer, Yoav (2010). "Effect of salivary esterase on the integrity and fracture toughness of the dentin-resin interface". Journal of Biomedical Materials Research Part B: Applied Biomaterials 94 (1): 230–7. doi:10.1002/jbm.b.31645. PMID 20524199. 

Further reading