Chemistry:Carbon dioxide (data page)

From HandWiki
Short description: Chemical data page

This page provides supplementary chemical data on carbon dioxide.

Material Safety Data Sheet

The handling of this chemical may incur notable safety precautions. It is highly recommended that you seek the Material Safety Datasheet (MSDS) for this chemical from a reliable source such as SIRI, and follow its directions. MSDS for solid carbon dioxide is available from Pacific Dry Ice, inc.

Structure and properties

Structure and properties
Index of refraction, nD 1.000449 at 589.3 nm and 0 °C[1]
Dielectric constant, εr 1.60 ε0 at 0 °C, 50 atm
Average energy per C=O bond 804.4 kJ/mol at 298 K (25 °C)[2]
Bond length C=O 116.21 pm (1.1621 Å)[3]
Bond angle O–C–O: 180°[3]
Magnetic susceptibility ?
Surface tension 4.34 dyn/cm at 20 °C
and equilibrium pressure
Viscosity[4] of liquid
at equilibrium pressure
0.0925 mPa·s at 5 °C
0.0852 mPa·s at 10 °C
0.0712 mPa·s at 20 °C
0.0625 mPa·s at 25 °C
0.0321 mPa·s at 31.1 °C

Thermodynamic properties

Phase behavior
Triple point 216.58 K (−56.57 °C), 518.5 kPa
Critical point 304.18 K (31.03 °C), 7.38 MPa
Std enthalpy change
of fusion, ΔfusHo
9.019 kJ/mol at triple point[5]
Entropy change
of fusion, ΔfusS
40 J/(mol·K) at triple point
Std enthalpy change
of vaporization,[6][7] ΔvapHo
15.326 kJ/mol at 215.7 K (−57.5 °C) (348 J/g)
Std entropy change
of vaporization, ΔvapSo
70.8 J/(mol·K)
Solid properties
Std enthalpy change
of formation, ΔfHosolid
−427.4 kJ/mol
Standard molar entropy,[8]
Sosolid
51.07 J/(mol·K)
Heat capacity,[8] cp

2.534 J/(mol·K) at 15.52 K (−257.63 °C)
47.11 J/(mol·K) at 146.48 K (−126.67 °C)
54.55 J/(mol·K) at 189.78 K (−83.37 °C)

Liquid properties
Std enthalpy change
of formation, ΔfHoliquid
? kJ/mol
Standard molar entropy,
Soliquid
? J/(mol K)
Heat capacity,[9] cp 80—150 J/(mol·K) at 220—290 K
Gas properties
Std enthalpy change
of formation, ΔfHogas
−393.52 kJ/mol
Standard molar entropy,
Sogas
213.79 J/(mol·K)
Heat capacity,[10][11] cp

33.89 J/(mol K) at –75 °C
36.33 J/(mol K) at 0 °C
36.61 J/(mol K) at 15 °C
38.01 J/(mol K) at 100 °C
43.81 J/(mol K) at 400 °C
50.87 J/(mol K) at 1000 °C
56.91 J/(mol K) at 2000 °C
53.01 J/(mol K) at 38 °C, 2457 kPa
60.01 J/(mol K) at 38 °C, 5482 kPa
183.1 J/(mol K) at 38 °C, 8653 kPa

Heat capacity ratio[10]
γ = cp/cv

1.37 at –75 °C
1.310 at 0 °C
1.304 at 15 °C
1.281 at 100 °C
1.235 at 400 °C
1.195 at 1000 °C
1.171 at 2000 °C

van der Waals' constants[12] a = 363.96 L2 kPa/mol2
b = 0.04267 liter per mole
Equilibrium with carbon monoxide[13]

CO + ½O2 → CO2

K = [math]\displaystyle{ \frac{[\ce{CO2}]}{[\ce{CO}][\ce{O2}]^{1/2}} }[/math]

pK = log10 K

pK = 45.0438 at T = 298.16 K
pK = 25.0054 at T = 500 K
pK = 16.5383 at T = 700 K
pK = 11.8409 at T = 900 K
pK = 8.8583 at T = 1100 K
pK = 6.7989 at T = 1300 K
pK = 5.2943 at T = 1500 K

Solubility in water at various temperatures

Aqueous Solubility of CO2 at 101.3 kPa (1 atm) partial pressure[14]
Temperature Dissolved
CO2 volume
per volume H2O
grams CO2 per
100 ml H2O
0 °C 1.713 0.3346
1 °C 1.646 0.3213
2 °C 1.584 0.3091
3 °C 1.527 0.2978
4 °C 1.473 0.2871
5 °C 1.424 0.2774
6 °C 1.377 0.2681
7 °C 1.331 0.2589
8 °C 1.282 0.2492
9 °C 1.237 0.2403
10 °C 1.194 0.2318
11 °C 1.154 0.2239
12 °C 1.117 0.2165
13 °C 1.083 0.2098
14 °C 1.050 0.2032
15 °C 0.98819 0.1970
16 °C 0.985 0.1903
17 °C 0.956 0.1845
   
Temperature Dissolved
CO2 volume
per volume H2O
grams CO2 per
100 ml H2O
18 °C 0.928 0.1789
19 °C 0.902 0.1737
20 °C 0.878 0.1688
21 °C 0.854 0.1640
22 °C 0.829 0.1590
23 °C 0.804 0.1540
24 °C 0.781 0.1493
25 °C 0.759 0.1449
26 °C 0.738 0.1406
27 °C 0.718 0.1366
28 °C 0.699 0.1327
29 °C 0.682 0.1292
30 °C 0.655 0.1257
35 °C 0.592 0.1105
40 °C 0.530 0.0973
45 °C 0.479 0.0860
50 °C 0.436 0.0761
60 °C 0.359 0.0576
  • Second column of table indicates solubility at each given temperature in volume of CO2 as it would be measured at 101.3 kPa and 0 °C per volume of water.
  • The solubility is given for "pure water", i.e., water which contain only CO2. This water is going to be acidic. For example, at 25 °C the pH of 3.9 is expected (see carbonic acid). At less acidic pH values, the solubility will increase because of the pH-dependent speciation of CO2.

Vapor pressure of solid and liquid

P in mm Hg 1 10 40 100 400 760 1520 3800 7600 15200 30400 45600
P in atm (2sf, derived from mm Hg) 0.0013 0.013 0.053 0.13 0.53 1.0 2.0 5.0 10 20 40 60
P in kPa (derived from mm Hg / atm) 0.13 1.3 5.3 13 53 101.325 202.65 506.625 1013.25 2026.5 4053 6079.5
T in °C −134.3(s) −119.5(s) −108.6(s) −100.2(s) −85.7(s) −78.2(s) −69.1(s) −56.7 −39.5 −18.9 5.9 22.4

Table data obtained from CRC Handbook of Chemistry and Physics 44th ed. Annotation "(s)" indicates equilibrium temperature of vapor over solid. Otherwise temperature is equilibrium of vapor over liquid. For kPa values, where datum is whole numbers of atmospheres exact kPa values are given, elsewhere 2 significant figures derived from mm Hg data.

log of Carbon Dioxide vapor pressure. Uses formula [math]\displaystyle{ \scriptstyle \ln P_\text{mmHg} = \ln \frac{760}{101.325} - 24.03761 \ln(T + 273.15) - \frac{7062.404}{T + 273.15} + 166.3861 + 3.368548 \times 10^{-5} (T + 273.15)^2 }[/math] obtained from CHERIC[6]

Phase diagram

Carbon dioxide pressure-temperature phase diagram.svg

Liquid/vapor equilibrium thermodynamic data

The table below gives thermodynamic data of liquid CO2 in equilibrium with its vapor at various temperatures. Heat content data, heat of vaporization, and entropy values are relative to the liquid state at 0 °C temperature and 3483 kPa pressure. To convert heat values to joules per mole values, multiply by 44.095 g/mol. To convert densities to moles per liter, multiply by 22.678 cm3 mol/(L·g). Data obtained from CRC Handbook of Chemistry and Physics, 44th ed. pages 2560–2561, except for critical temperature line (31.1 °C) and temperatures −30 °C and below, which are taken from Lange's Handbook of Chemistry, 10th ed. page 1463.

Carbon dioxide liquid/vapor equilibrium thermodynamic data
Temp.
°C
Pvap
Vapor
pressure
kPa
Hliq
Heat
content
liquid
J/g
Hvap
Heat
content
vapor
J/g
ΔvapHo
Heat of
vapor-
ization
J/g
ρvap
Density
of vapor
g/cm3
ρliq
Density
of liquid
g/cm3
Sliq
Entropy
liquid
J/mol-°C
Svap
Entropy
vapor
J/mol-°C
−56.6 518.3 1.179
−56.0 531.8 1.177
−54.0 579.1 1.169
−52.0 629.6 1.162
−50.0 683.4 1.155
−48.0 740.6 1.147
−46.0 801.3 1.139
−44.0 865.6 1.131
−42.0 933.8 1.124
−40.0 1005.7 1.116
−38.0 1081.9 1.108
−36.0 1161.8 1.100
−34.0 1246.2 1.092
−32.0 1335.1 1.084
−30.0 1428.6 1.075
−28.89 1521 −55.69 237.1 292.9 0.03846 1.0306 −9.48 43.41
−27.78 1575 −53.76 237.3 291.0 0.03987 1.0276 −9.13 43.21
−26.67 1630 −51.84 237.6 289.4 0.04133 1.0242 −8.78 43.01
−25.56 1686 −49.87 237.6 287.5 0.04283 1.0209 −8.45 42.78
−24.44 1744 −47.91 237.8 285.7 0.04440 1.0170 −8.10 42.56
−23.33 1804 −45.94 237.8 283.6 0.04600 1.0132 −7.75 42.36
−22.22 1866 −43.93 237.8 281.7 0.04767 1.0093 −7.40 42.14
−21.11 1928 −41.92 237.8 279.6 0.04938 1.0053 −7.05 41.94
−20.00 1993 −39.91 237.8 277.8 0.05116 1.0011 −6.68 41.71
−18.89 2059 −37.86 237.8 275.7 0.05300 0.9968 −6.31 41.49
−17.78 2114 −35.82 237.6 273.6 0.05489 0.9923 −5.98 41.27
−16.67 2197 −33.73 237.6 271.2 0.05686 0.9875 −5.61 41.05
−15.56 2269 −31.64 237.3 269.2 0.05888 0.9829 −5.26 40.83
−14.44 2343 −29.54 237.3 266.9 0.06098 0.9782 −4.91 40.61
−13.33 2418 −27.41 237.1 264.5 0.06314 0.9734 −4.54 40.39
−12.22 2495 −25.27 236.9 262.2 0.06539 0.9665 −4.17 40.15
−11.11 2574 −23.09 236.7 259.7 0.06771 0.9639 −3.80 39.92
−10.00 2654 −20.90 236.4 257.3 0.07011 0.9592 −3.43 39.68
−8.89 2738 −18.69 235.9 254.8 0.07259 0.9543 −3.06 39.46
−7.78 2823 −16.45 235.7 252.2 0.07516 0.9494 −2.69 39.22
−6.67 2910 −14.18 235.2 249.4 0.07783 0.9443 −2.32 38.98
−5.56 2999 −11.90 234.8 246.6 0.08059 0.9393 −1.94 38.74
−4.44 3090 −9.977 234.3 243.8 0.08347 0.9340 −1.57 38.50
−3.89 3136 −8.410 234.1 242.4 0.08494 0.9313 −1.37 38.37
−2.78 3230 −6.046 233.6 239.7 0.08797 0.9260 −0.98 38.12
−1.67 3327 −3.648 232.9 236.6 0.09111 0.9206 −0.59 37.88
−0.56 3425 −1.222 232.4 233.6 0.09438 0.9150 −0.20 37.62
0.56 3526 1.234 231.7 230.5 0.09776 0.9094 0.20 37.36
1.67 3629 3.728 231.0 227.3 0.1013 0.9036 0.61 37.08
2.78 3735 6.268 230.4 224.0 0.1050 0.8975 1.01 36.83
3.89 3843 8.445 229.4 220.5 0.1088 0.8914 1.42 36.55
5.00 3953 11.46 228.5 217.0 0.1128 0.8850 1.83 36.25
6.11 4067 14.13 227.6 213.4 0.1169 0.8784 2.25 35.98
7.22 4182 16.85 226.5 209.7 0.1213 0.8716 2.69 35.68
8.33 4300 19.63 225.4 205.8 0.1258 0.8645 3.12 35.39
9.44 4420 22.46 224.3 201.8 0.1306 0.8571 3.56 35.07
10.56 4544 25.36 223.1 197.7 0.1355 0.8496 4.02 34.76
11.67 4670 28.33 221.8 193.4 0.1408 0.8418 4.48 34.45
12.78 4798 31.35 220.3 188.9 0.1463 0.8338 4.94 34.11
13.89 4929 34.49 218.8 184.3 0.1521 0.8254 5.42 33.76
15.00 5063 37.30 217.2 179.5 0.1583 0.8168 5.92 33.41
16.11 5200 41.03 215.1 174.4 0.1648 0.8076 6.42 33.02
17.22 5340 44.48 213.6 169.1 0.1717 0.7977 6.96 32.66
18.33 5482 48.03 211.5 163.5 0.1791 0.7871 7.49 32.25
19.44 5628 51.71 209.4 157.6 0.1869 0.7759 8.04 31.83
20.56 5776 55.61 207.0 151.4 0.1956 0.7639 8.63 31.38
21.67 5928 59.66 204.3 144.7 0.2054 0.7508 9.24 30.90
22.78 6083 63.97 201.5 137.5 0.2151 0.7367 9.89 30.39
23.89 6240 68.58 198.4 129.8 0.2263 0.7216 10.57 29.85
25.00 6401 73.51 194.8 121.3 0.2387 0.7058 11.31 29.24
26.11 6565 78.91 190.7 111.8 0.2532 0.6894 12.10 28.60
27.22 6733 84.94 186.0 101.1 0.2707 0.6720 12.99 27.84
28.33 6902 91.88 180.4 88.49 0.2923 0.6507 14.00 26.95
29.44 7081 100.4 173.1 72.72 0.3204 0.6209 15.24 25.85
30.00 7164 105.6 168.4 62.76 0.3378 0.5992 16.01 25.15
30.56 7253 112.3 162.3 50.04 0.3581 0.5661 16.99 24.24
31.1 7391 0.00 0.4641 0.4641
Temp.
°C
Pvap
Vapor
pressure
kPa
Hliq
Heat
content
liquid
J/g
Hvap
Heat
content
vapor
J/g
ΔvapHo
Heat of
vapor-
ization
J/g
ρvap
Density
of vapor
g/cm3
ρliq
Density
of liquid
g/cm3
Sliq
Entropy
liquid
J/mol-°C
Svap
Entropy
vapor
J/mol-°C

Spectral data

UV-Vis
λmax ? nm
Extinction coefficient, ε ?
IR[lower-alpha 1]
Major absorption bands[15][16][17] 2347 and 667 cm−1

(4.26 and 14.99 um)

NMR
Proton NMR not applicable
Carbon-13 NMR 125.0[18]
MS
Masses of main fragments  

Notes

  1. Because nitrogen and oxygen are symmetrical and carbon dioxide and water vapor are not, the air in an infrared spectrophotometer may show absorbances for CO2 and water. This is easily overcome by subtracting a blank spectrum from the experimental spectrum, and instruments are often purged with dry nitrogen as well.

References

  1. "Refractive index of gases". NPL. http://www.kayelaby.npl.co.uk/general_physics/2_5/2_5_7.html. Retrieved 7 April 2010. 
  2. Darwent, B. deB. (1970). "Bond Dissociation Energies in Simple Molecules" Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.) 31, 52 pages.
  3. 3.0 3.1 "CCCBDB listing of experimental data page 2". https://cccbdb.nist.gov/exp2x.asp?casno=124389. 
  4. Lange's Handbook of Chemistry, 10th ed. pp. 1669–1674
  5. "Gas Encyclopaedia". Air Liquide. http://encyclopedia.airliquide.com/encyclopedia.asp?GasID=26. Retrieved 1 June 2007. 
  6. 6.0 6.1 "Pure Component Properties" (Queriable database). Chemical Engineering Research Information Center. http://www.cheric.org/research/kdb/hcprop/cmpsrch.php. Retrieved 8 May 2007. 
  7. "Carbon dioxide 화학공학소재연구정보센터(CHERIC) | 연구정보 | KDB | Pure Component Properties". https://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=1943. 
  8. 8.0 8.1 Giauque, W. F.; Egan, C. J. (1937). "Carbon Dioxide. The Heat Capacity and Vapor Pressure of the Solid. The Heat of Sublimation. Thermodynamic and Spectroscopic Values of the Entropy". The Journal of Chemical Physics 5 (1): 45–54. doi:10.1063/1.1749929. Bibcode1937JChPh...5...45G. 
  9. "Liquid Heat Capcity of CARBON DIOXIDE 화학공학소재연구정보센터(CHERIC) | 연구정보 | KDB | Pure Component Properties". https://www.cheric.org/research/kdb/hcprop/showcoef.php?cmpid=1943&prop=CPL. 
  10. 10.0 10.1 Lange's Handbook of Chemistry, 10th ed, pp. 1525–1528.
  11. "Ideal Gas Heat Capacity of CARBON DIOXIDE 화학공학소재연구정보센터(CHERIC) | 연구정보 | KDB | Pure Component Properties". https://www.cheric.org/research/kdb/hcprop/showcoef.php?cmpid=1943&prop=CPG. 
  12. Lange's Handbook of Chemistry, 10th ed, pp. 1522–1524.
  13. Lange's Handbook of Chemistry, 10th ed. pp. 1573–1576.
  14. Lange's Handbook of Chemistry, 10th ed., p. 1100
  15. Martin, P. E.; Barker, E. F. (1932). "The Infrared Absorption Spectrum of Carbon Dioxide". Physical Review 41 (3): 291–303. doi:10.1103/PhysRev.41.291. ISSN 0031-899X. Bibcode1932PhRv...41..291M. 
  16. Ottonello-Briano, Floria; Errando-Herranz, Carlos; Rödjegård, Henrik; Martin, Hans; Sohlström, Hans; Gylfason, Kristinn B. (2019). "Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide". Optics Letters 45 (1): 109. doi:10.1364/OL.45.000109. ISSN 0146-9592. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265603. 
  17. Reichle, Henry G. (May 1969), The Effect of Several Infrared Transparent Broadening Gases on the Absorption of Infrared Radiation in the l5 µm Band of Carbon Dioxide, High Altitude Engineering Laboratory, pp. 43, 19690019487, https://ntrs.nasa.gov/api/citations/19690019487/downloads/19690019487.pdf 
  18. Reich, H. J.. "C-13 Chemical Shifts". University of Wisconsin. http://www.chem.wisc.edu/areas/reich/handouts/nmr-c13/cdata.htm. Retrieved 31 May 2015. 
  • Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD), http://webbook.nist.gov