Chemistry:Moldavite
Moldavite | |
---|---|
Moldavite from Dobrkovská Lhotka | |
General | |
Category | Glass |
Formula (repeating unit) | SiO2(+Al2O3) |
Crystal system | Amorphous |
Identification | |
Color | Olive green |
Mohs scale hardness | 5.5[1] to 7[2] |
|re|er}} | Vitreous |
Diaphaneity | Opaque, translucent, transparent |
Specific gravity | 2.32 to 2.38 |
Optical properties | Isotropic |
Refractive index | 1.48 to 1.54 |
Birefringence | None |
Pleochroism | Absent |
Dispersion | None |
References | [1] |
Moldavite (Czech: vltavín) is a forest green, olive green or blue greenish vitreous silica projectile glass formed by a meteorite impact in southern Germany (Nördlinger Ries Crater)[3] that occurred about 15 million years ago.[4] It is a type of tektite and a gemstone.[5]
Early studies
Moldavite was introduced to the scientific public for the first time in 1786 as "chrysolites" from Týn nad Vltavou in a lecture by Josef Mayer of Prague University, read at a meeting of the Bohemian Scientific Society (Mayer 1788). Zippe (1836) first used the term "moldavite", derived from the Moldau (Vltava) river in Bohemia (the Czech Republic), from where the first described pieces came.[6]
Origin
In 1900, Franz Eduard Suess pointed out that the gravel-size moldavites exhibited curious pittings and wrinkles on the surface, which could not be due to the action of water, but resembled the characteristic markings on many meteorites. He attributed the material to a cosmic origin and regarded moldavites as a special type of meteorite for which he proposed the name of tektite. Moldavites' highly textured surfaces are now known to be the result of pervasive etching by naturally occurring CO
2 and humic acids present in groundwater.[7] Because of their extremely low water content and chemical composition, the current consensus among earth scientists is that moldavites were formed about 14.7 million years ago during the impact of a giant meteorite in the present-day Nördlinger Ries crater. The impact melted material and launched it into the air. As the material was airborne, it cooled and solidified. Currently, moldavites have been found in an area that includes southern Bohemia, western Moravia, the Cheb Basin (northwest Bohemia), Lusatia (Germany), and Waldviertel (Austria).[8] Isotope analysis of samples of moldavites have shown a beryllium-10 isotope composition similar to the composition of Australasian tektites (australites) and Ivory Coast tektites (ivorites).[9]
Most moldavites are from South Bohemian localities, with just a few found in South Moravian localities. Rare moldavites have been found in the Lusatian area (near Dresden), Cheb basin area (West Bohemia) and Northern Austria (near Radessen). Principal occurrences of moldavites in Bohemia are associated with Tertiary sediments of the České Budějovice and Třeboň basins. The most prominent localities are concentrated in a NW-SE strip along the western margin of the České Budějovice Basin. The majority of these occurrences are bound to the Vrábče Member and Koroseky Sandy Gravel. Prominent localities in the Třeboň Basin are bound to gravels and sands of the Domanín Formation.
In Moravia, moldavite occurrences are restricted to an area roughly bounded by the towns of Třebíč, Znojmo and Brno. The colour of Moravian moldavites usually differs from their Bohemian counterparts, as it tends to be brownish. Taking into account the number of pieces found, Moravian localities are considerably less productive than the Bohemian ones; however, the average weight of the moldavites found is much higher. The oldest (primary) moldavite-bearing sediments lie between Slavice and Třebíč. The majority of other localities in southern Moravia are associated with sediments of Miocene as well as Pleistocene rivers that flowed across this area more or less to the southeast, similar to the present streams of Jihlava, Oslava and Jevišovka.
Properties
The chemical formula of moldavite is SiO2(+Al2O3). Its properties are similar to those of other types of glass, and reported Mohs hardness varies from 5.5[1] to 7.[2] Moldavite can be transparent or translucent with a mossy green color, with swirls and bubbles accentuating its mossy appearance. Moldavites can be distinguished from most green glass imitations by observing their worm-like schlieren.
Use
Moldavites were discovered by prehistoric people in the Czech Republic and Austria and were used to make flaked tools. Some of the worked moldavites date to the Aurignacian period of the Upper Paleolithic, approximately 43,000 to 26,000 years before the present.[10]
In the modern world, moldavites are often used, rough or cut, as semi-precious stones in jewelry. They have purported metaphysical qualities and are often used in crystal healing.
Presentation
There is the Moldavite Museum in Český Krumlov, Czech Republic.[11]
Gallery
References
- ↑ 1.0 1.1 1.2 "Moldavite". Gemdat.org. http://www.gemdat.org/gem-10860.html.
- ↑ 2.0 2.1 O'Keefe A., John. "Tektites and their Origin"., Goddard Space Centre, NASA. Retrieved 9 December 2017.
- ↑ Artemieva, N., Pierazzo, E., Stöffler, D. (2002). "Numerical modeling of tektite origin in oblique impacts: Implication to Ries-Moldavites strewn field". Bulletin of the Czech Geological Survey (Czech Geological Survey) 77: 303–311. http://www.geology.cz/bulletin/fulltext/05artemievafinal.pdf.
- ↑ Earth Impact Database: Ries at www.passc.net/EarthImpactDatabase, Accessed 5 February 2018
- ↑ Paisarnsombat, S.; Monarumit, N.; Aimploysri, S. (2021). "Characteristic of Fe in tektite observed from XANES and UV-Vis spectroscopy". Journal of Physics: Conference Series 1719: 012002. doi:10.1088/1742-6596/1719/1/012002.
- ↑ "Moldavite" at Mindat.org, Accessed 5 February 2018
- ↑ Skála, R.; Strnad, L.; McCammon, C.; Čada, M. (2009). "Moldavites from the Cheb Basin, Czech Republic". Geochimica et Cosmochimica Acta 73 (4): 1149–1179. doi:10.1016/j.gca.2008.11.003. Bibcode: 2009GeCoA..73.1145S. https://www.sciencedirect.com/science/article/pii/S0016703708006510.
- ↑ Trnka, M.; Houzar, S. (2002). "Moldavites: a review PDF". Bulletin of the Czech Geological Survey 77 (4): 283–302. http://www.geology.cz/bulletin/contents/2002/vol77no4/04trnkafinal.pdf.
- ↑ Serefiddin, F.; Herzog, G. F.; Koeberl, C. (2007). "Beryllium-10 concentrations of tektites from the Ivory Coast and from Central Europe: Evidence for near-surface residence of precursor materials". Geochimica et Cosmochimica Acta 71 (6): 1574–1582. doi:10.1016/j.gca.2006.12.007. Bibcode: 2007GeCoA..71.1574S. http://www.univie.ac.at/geochemistry/koeberl/publikation_list/296-Be-10-Ivory-Coast-tektites-and-moldavites-GCA2007.pdf.
- ↑ Williams, Olwen; Nandris, John (1977). "The Hungarian and Slovak sources of archaeological obsidian: an interim report on further fieldwork, with a note on tektites". Journal of Archaeological Science 4 (3): 207–219. doi:10.1016/0305-4403(77)90089-9. https://dx.doi.org/10.1016/0305-4403%2877%2990089-9.
- ↑ "Home". Moldavite Museum. https://www.vltaviny.cz/en/.
Wikisource has the text of the 1911 Encyclopædia Britannica article Moldavite. |
- J. Baier: Zur Herkunft und Bedeutung der Ries-Auswurfprodukte für den Impakt-Mechanismus. – Jber. Mitt. oberrhein. geol. Ver., N. F. 91, 9–29, 2009.
- J. Baier: Die Auswurfprodukte des Ries-Impakts, Deutschland, in Documenta Naturae, Vol. 162, München, 2007. ISBN:978-3-86544-162-1
Further reading
- Milan PRCHAL "60 years on the green wave". (Robert Jelinek, Admir Mesic Eds). Der Konterfei 072, Vienna, 2021. ISBN:978-3-903043-59-6
- The Austrian Moldavite – On the Traces of the Green Tektite (Robert Jelinek Ed.). Der Konterfei 078, Vienna, 2023. ISBN: 978-3-903043-66-4
External links
Original source: https://en.wikipedia.org/wiki/Moldavite.
Read more |