Convex body

From HandWiki
Short description: Non-empty convex set in Euclidean space
A dodecahedron is a convex body.

In mathematics, a convex body in [math]\displaystyle{ n }[/math]-dimensional Euclidean space [math]\displaystyle{ \R^n }[/math] is a compact convex set with non-empty interior. Some authors do not require a non-empty interior, merely that the set is non-empty.

A convex body [math]\displaystyle{ K }[/math] is called symmetric if it is centrally symmetric with respect to the origin; that is to say, a point [math]\displaystyle{ x }[/math] lies in [math]\displaystyle{ K }[/math] if and only if its antipode, [math]\displaystyle{ - x }[/math] also lies in [math]\displaystyle{ K. }[/math] Symmetric convex bodies are in a one-to-one correspondence with the unit balls of norms on [math]\displaystyle{ \R^n. }[/math]

Important examples of convex bodies are the Euclidean ball, the hypercube and the cross-polytope.

Metric space structure

Write [math]\displaystyle{ \mathcal K^n }[/math] for the set of convex bodies in [math]\displaystyle{ \mathbb R^n }[/math]. Then [math]\displaystyle{ \mathcal K^n }[/math] is a complete metric space with metric

[math]\displaystyle{ d(K,L) := \inf\{\epsilon \geq 0 : K \subset L + B^n(\epsilon), L \subset K + B^n(\epsilon) \} }[/math].[1]

Further, the Blaschke Selection Theorem says that every d-bounded sequence in [math]\displaystyle{ \mathcal K^n }[/math] has a convergent subsequence.[1]

Polar body

If [math]\displaystyle{ K }[/math] is a bounded convex body containing the origin [math]\displaystyle{ O }[/math] in its interior, the polar body [math]\displaystyle{ K^* }[/math] is [math]\displaystyle{ \{u : \langle u,v \rangle \leq 1, \forall v \in K \} }[/math]. The polar body has several nice properties including [math]\displaystyle{ (K^*)^*=K }[/math], [math]\displaystyle{ K^* }[/math] is bounded, and if [math]\displaystyle{ K_1\subset K_2 }[/math] then [math]\displaystyle{ K_2^*\subset K_1^* }[/math]. The polar body is a type of duality relation.

See also

References

  1. 1.0 1.1 Hug, Daniel; Weil, Wolfgang (2020). "Lectures on Convex Geometry". Graduate Texts in Mathematics. doi:10.1007/978-3-030-50180-8. ISSN 0072-5285. http://dx.doi.org/10.1007/978-3-030-50180-8.