Conway triangle notation
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (October 2023) (Learn how and when to remove this template message) |
In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:
- [math]\displaystyle{ S = bc \sin A = ac \sin B = ab \sin C \, }[/math]
where S = 2 × area of reference triangle and
- [math]\displaystyle{ S_\varphi = S \cot \varphi . \, }[/math]
in particular
- [math]\displaystyle{ S_A = S \cot A = bc \cos A= \frac {b^2+c^2-a^2} {2}\, }[/math]
- [math]\displaystyle{ S_B = S \cot B = ac \cos B= \frac {a^2+c^2-b^2} {2}\, }[/math]
- [math]\displaystyle{ S_C = S \cot C = ab \cos C= \frac {a^2+b^2-c^2} {2}\, }[/math]
- [math]\displaystyle{ S_\omega = S \cot \omega = \frac {a^2+b^2+c^2} {2}\, }[/math] where [math]\displaystyle{ \omega \, }[/math] is the Brocard angle. The law of cosines is used: [math]\displaystyle{ a^2=b^2+c^2-2bc \cos A }[/math].
- [math]\displaystyle{ S_{\frac {\pi} {3}} = S \cot {\frac {\pi} {3}} = S \frac {\sqrt 3}{3} \, }[/math]
- [math]\displaystyle{ S_{2\varphi} = \frac {S_\varphi^2 - S^2} {2S_\varphi} \quad\quad S_{ \frac {\varphi} {2}} = S_\varphi + \sqrt {S_\varphi^2 + S^2} \, }[/math] for values of [math]\displaystyle{ \varphi }[/math] where [math]\displaystyle{ 0 \lt \varphi \lt \pi \, }[/math]
- [math]\displaystyle{ S_{\vartheta + \varphi} = \frac {S_\vartheta S_\varphi - S^2} {S_\vartheta + S_\varphi} \quad\quad S_{\vartheta - \varphi} = \frac {S_\vartheta S_\varphi + S^2} {S_\varphi - S_\vartheta} \, . }[/math]
Furthermore the convention uses a shorthand notation for [math]\displaystyle{ S_{\vartheta}S_{\varphi}=S_{\vartheta\varphi} \, }[/math] and [math]\displaystyle{ S_{\vartheta}S_{\varphi}S_{\psi}=S_{\vartheta\varphi\psi} \, . }[/math]
Hence:
- [math]\displaystyle{ \sin A = \frac {S} {bc} = \frac {S} {\sqrt {S_A^2 + S^2}} \quad\quad \cos A = \frac {S_A} {bc} = \frac {S_A} {\sqrt {S_A^2 + S^2}} \quad\quad \tan A = \frac {S} {S_A} \, }[/math]
- [math]\displaystyle{ a^2 = S_B + S_C \quad\quad b^2 = S_A + S_C \quad\quad c^2 = S_A + S_B \, . }[/math]
Some important identities:
- [math]\displaystyle{ \sum_\text{cyclic} S_A = S_A+S_B+S_C = S_\omega \, }[/math]
- [math]\displaystyle{ S^2 = b^2c^2 - S_A^2 = a^2c^2 - S_B^2 = a^2b^2 - S_C^2 \, }[/math]
- [math]\displaystyle{ S_{BC} = S_BS_C = S^2 - a^2S_A \quad\quad S_{AC} = S_AS_C = S^2 - b^2S_B \quad\quad S_{AB} = S_AS_B = S^2 - c^2S_C \, }[/math]
- [math]\displaystyle{ S_{ABC} = S_AS_BS_C = S^2(S_\omega-4R^2)\quad\quad S_\omega=s^2-r^2-4rR \, }[/math]
where R is the circumradius and abc = 2SR and where r is the incenter, [math]\displaystyle{ s= \frac{a+b+c}{2} \, }[/math] and [math]\displaystyle{ a+b+c = \frac {S} {r} \, . }[/math]
Some useful trigonometric conversions:
- [math]\displaystyle{ \sin A \sin B \sin C = \frac {S} {4R^2} \quad\quad \cos A \cos B \cos C = \frac {S_\omega-4R^2} {4R^2} }[/math]
- [math]\displaystyle{ \sum_\text{cyclic} \sin A = \frac {S} {2Rr} = \frac {s}{R} \quad\quad \sum_\text{cyclic} \cos A = \frac {r+R} {R} \quad\quad \sum_\text{cyclic} \tan A = \frac {S}{S_\omega-4R^2}=\tan A \tan B \tan C \, . }[/math]
Some useful formulas:
- [math]\displaystyle{ \sum_\text{cyclic} a^2S_A = a^2S_A + b^2S_B + c^2 S_C = 2S^2 \quad\quad \sum_\text{cyclic} a^4 = 2(S_\omega^2-S^2) \, }[/math]
- [math]\displaystyle{ \sum_\text{cyclic} S_A^2 = S_\omega^2 - 2S^2 \quad\quad \sum_\text{cyclic} S_{BC} = \sum_\text{cyclic} S_BS_C = S^2 \quad\quad \sum_\text{cyclic} b^2c^2 = S_\omega^2 + S^2 \, . }[/math]
Some examples using Conway triangle notation:
Let D be the distance between two points P and Q whose trilinear coordinates are pa : pb : pc and qa : qb : qc. Let Kp = apa + bpb + cpc and let Kq = aqa + bqb + cqc. Then D is given by the formula:
- [math]\displaystyle{ D^2= \sum_\text{cyclic} a^2S_A\left(\frac {p_a}{K_p} - \frac {q_a}{K_q}\right)^2 \, . }[/math]
Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:
For the circumcenter pa = aSA and for the orthocenter qa = SBSC/a
- [math]\displaystyle{ K_p= \sum_\text{cyclic} a^2S_A = 2S^2 \quad\quad K_q= \sum_\text{cyclic} S_BS_C = S^2 \, . }[/math]
Hence:
- [math]\displaystyle{ \begin{align} D^2 & {} = \sum_\text{cyclic} a^2S_A\left(\frac {aS_A} {2S^2} - \frac {S_BS_C} {aS^2}\right)^2 \\ & {} = \frac {1} {4S^4} \sum_\text{cyclic} a^4S_A^3 - \frac {S_AS_BS_C} {S^4} \sum_\text{cyclic} a^2S_A + \frac {S_AS_BS_C} {S^4} \sum_\text{cyclic} S_BS_C \\ & {} = \frac {1} {4S^4} \sum_\text{cyclic} a^2S_A^2(S^2-S_BS_C) - 2(S_\omega-4R^2) + (S_\omega-4R^2) \\ & {} = \frac {1} {4S^2} \sum_\text{cyclic} a^2S_A^2 - \frac {S_AS_BS_C} {S^4} \sum_\text{cyclic} a^2S_A - (S_\omega-4R^2) \\ & {} = \frac {1} {4S^2} \sum_\text{cyclic} a^2(b^2c^2-S^2) - \frac {1} {2}(S_\omega-4R^2) -(S_\omega-4R^2) \\ & {} = \frac {3a^2b^2c^2} {4S^2} - \frac {1} {4} \sum_\text{cyclic} a^2 - \frac {3} {2}(S_\omega-4R^2) \\ & {} = 3R^2- \frac {1} {2} S_\omega - \frac {3} {2} S_\omega + 6R^2 \\ & {} = 9R^2- 2S_\omega. \end{align} }[/math]
This gives:
- [math]\displaystyle{ OH = \sqrt{9R^2- 2S_\omega \,}. }[/math]
References
- Weisstein, Eric W.. "Conway Triangle Notation". http://mathworld.wolfram.com/ConwayTriangleNotation.html.
Original source: https://en.wikipedia.org/wiki/Conway triangle notation.
Read more |