Corestriction
In mathematics, a corestriction[1][better source needed] of a function is a notion analogous to the notion of a restriction of a function. The duality prefix co- here denotes that while the restriction changes the domain to a subset, the corestriction changes the codomain to a subset. However, the notions are not categorically dual. Given any subset [math]\displaystyle{ S\subset A, }[/math] we can consider the corresponding inclusion of sets [math]\displaystyle{ i_S:S\hookrightarrow A }[/math] as a function. Then for any function [math]\displaystyle{ f:A\to B }[/math], the restriction [math]\displaystyle{ f|_S:S\to B }[/math] of a function [math]\displaystyle{ f }[/math] onto [math]\displaystyle{ S }[/math] can be defined as the composition [math]\displaystyle{ f|_S = f\circ i_S }[/math].
Analogously, for an inclusion [math]\displaystyle{ i_T:T\hookrightarrow B }[/math] the corestriction [math]\displaystyle{ f|^T:A\to T }[/math] of [math]\displaystyle{ f }[/math] onto [math]\displaystyle{ T }[/math] is the unique function [math]\displaystyle{ f|^T }[/math] such that there is a decomposition [math]\displaystyle{ f = i_T\circ f|^T }[/math]. The corestriction exists if and only if [math]\displaystyle{ T }[/math] contains the image of [math]\displaystyle{ f }[/math]. In particular, the corestriction onto the image always exists and it is sometimes simply called the corestriction of [math]\displaystyle{ f }[/math]. More generally, one can consider corestriction of a morphism in general categories with images.[2] The term is well known in category theory, while rarely used in print.[3]
Andreotti[4] introduces the above notion under the name coastriction, while the name corestriction reserves to the notion categorically dual to the notion of a restriction. Namely, if [math]\displaystyle{ p^U:B\to U }[/math] is a surjection of sets (that is a quotient map) then Andreotti considers the composition [math]\displaystyle{ p^U\circ f:A\to U }[/math], which surely always exists.
References
- ↑ "Elementary set theory - is there a word for restricting the codomain of a function?". https://math.stackexchange.com/q/2662045.
- ↑ nlab, Image, https://ncatlab.org/nlab/show/image
- ↑ (Definition 3.1 and Remarks 3.2) in Gabriella Böhm, Hopf algebroids, in Handbook of Algebra (2008) arXiv:0805.3806
- ↑ paragraph 2-14 at page 14 of Andreotti, A., Généralités sur les categories abéliennes (suite) Séminaire A. Grothendieck, Tome 1 (1957) Exposé no. 2, http://www.numdam.org/item/SG_1957__1__A2_0
Original source: https://en.wikipedia.org/wiki/Corestriction.
Read more |