Cumulative hierarchy

From HandWiki
Short description: Family of sets indexed by ordinal numbers

In mathematics, specifically set theory, a cumulative hierarchy is a family of sets [math]\displaystyle{ W_\alpha }[/math] indexed by ordinals [math]\displaystyle{ \alpha }[/math] such that

  • [math]\displaystyle{ W_\alpha \subseteq W_{\alpha + 1} }[/math]
  • If [math]\displaystyle{ \lambda }[/math] is a limit ordinal, then [math]\displaystyle{ W_\lambda = \bigcup_{\alpha \lt \lambda} W_{\alpha} }[/math]

Some authors additionally require that [math]\displaystyle{ W_{\alpha + 1} \subseteq \mathcal P(W_\alpha) }[/math] or that [math]\displaystyle{ W_0 \ne \emptyset }[/math].[citation needed]

The union [math]\displaystyle{ W = \bigcup_{\alpha \in \mathrm{On}} W_\alpha }[/math] of the sets of a cumulative hierarchy is often used as a model of set theory.[citation needed]

The phrase "the cumulative hierarchy" usually refers to the standard cumulative hierarchy [math]\displaystyle{ \mathrm{V}_\alpha }[/math] of the von Neumann universe with [math]\displaystyle{ \mathrm{V}_{\alpha + 1} = \mathcal P(W_\alpha) }[/math] introduced by (Zermelo 1930).

Reflection principle

A cumulative hierarchy satisfies a form of the reflection principle: any formula in the language of set theory that holds in the union [math]\displaystyle{ W }[/math] of the hierarchy also holds in some stages [math]\displaystyle{ W_\alpha }[/math].

Examples

  • The von Neumann universe is built from a cumulative hierarchy [math]\displaystyle{ \mathrm{V}_\alpha }[/math].
  • The sets [math]\displaystyle{ \mathrm{L}_\alpha }[/math] of the constructible universe form a cumulative hierarchy.
  • The Boolean-valued models constructed by forcing are built using a cumulative hierarchy.
  • The well founded sets in a model of set theory (possibly not satisfying the axiom of foundation) form a cumulative hierarchy whose union satisfies the axiom of foundation.

References