Displaced Poisson distribution

From HandWiki
Displaced Poisson Distribution
Probability mass function
Displaced Poisson distributions for several values of λ and r. At r=0, the Poisson distribution is recovered. The probability mass function is only defined at integer values.
Parameters λ(0,), r(,)
Support k0
Mean λr
Mode {λr1,λrif λr+10if λ<r+1
Variance λ
MGF

eλ(et1)trI(r+s,λet)I(r+s,λ),  I(r,λ)=y=reλλyy!

When r is a negative integer, this becomes eλ(et1)tr

In statistics, the displaced Poisson, also known as the hyper-Poisson distribution, is a generalization of the Poisson distribution.

Definitions

Probability mass function

The probability mass function is

P(X=n)={eλλn+r(n+r)!1I(r,λ),n=0,1,2,if r0eλλn+r(n+r)!1I(r+s,λ),n=s,s+1,s+2,otherwise

where λ>0 and r is a new parameter; the Poisson distribution is recovered at r = 0. Here I(r,λ) is the Pearson's incomplete gamma function:

I(r,λ)=y=reλλyy!,

where s is the integral part of r. The motivation given by Staff[1] is that the ratio of successive probabilities in the Poisson distribution (that is P(X=n)/P(X=n1)) is given by λ/n for n>0 and the displaced Poisson generalizes this ratio to λ/(n+r).

Examples

One of the limitations of the Poisson distribution is that it assumes equidispersion – the mean and variance of the variable are equal.[2] The displaced Poisson distribution may be useful to model underdispersed or overdispersed data, such as:

  • the distribution of insect populations in crop fields;[3]
  • the number of flowers on plants;[1]
  • motor vehicle crash counts;[4] and
  • word or sentence lengths in writing.[5]

Properties

Descriptive Statistics

  • For a displaced Poisson-distributed random variable, the mean is equal to λr and the variance is equal to λ.
  • The mode of a displaced Poisson-distributed random variable are the integer values bounded by λr1 and λr when λr+1. When λ<r+1, there is a single mode at x=0.
  • The first cumulant κ1 is equal to λr and all subsequent cumulants κn,n2 are equal to λ.

References

  1. 1.0 1.1 Staff, P. J. (1967). "The displaced Poisson distribution". Journal of the American Statistical Association 62 (318): 643–654. doi:10.1080/01621459.1967.10482938. 
  2. Chakraborty, Subrata; Ong, S. H. (2017). "Mittag - Leffler function distribution - a new generalization of hyper-Poisson distribution" (in en). Journal of Statistical Distributions and Applications 4 (1). doi:10.1186/s40488-017-0060-9. ISSN 2195-5832. 
  3. Staff, P. J. (1964). "The Displaced Poisson Distribution" (in en). Australian Journal of Statistics 6 (1): 12–20. doi:10.1111/j.1467-842X.1964.tb00146.x. ISSN 0004-9581. https://onlinelibrary.wiley.com/doi/10.1111/j.1467-842X.1964.tb00146.x. 
  4. Khazraee, S. Hadi; Sáez‐Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique (2015). "Application of the Hyper‐Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes" (in en). Risk Analysis 35 (5): 919–930. doi:10.1111/risa.12296. ISSN 0272-4332. PMID 25385093. Bibcode2015RiskA..35..919K. https://onlinelibrary.wiley.com/doi/10.1111/risa.12296. 
  5. Antić, Gordana; Stadlober, Ernst; Grzybek, Peter; Kelih, Emmerich (2006), Spiliopoulou, Myra; Kruse, Rudolf; Borgelt, Christian et al., eds., "Word Length and Frequency Distributions in Different Text Genres" (in en), From Data and Information Analysis to Knowledge Engineering (Berlin/Heidelberg: Springer-Verlag): pp. 310–317, doi:10.1007/3-540-31314-1_37, ISBN 978-3-540-31313-7, http://link.springer.com/10.1007/3-540-31314-1_37, retrieved 2023-12-07