Distortion function
A distortion function in mathematics and statistics, for example, [math]\displaystyle{ g: [0,1] \to [0,1] }[/math], is a non-decreasing function such that [math]\displaystyle{ g(0) = 0 }[/math] and [math]\displaystyle{ g(1) = 1 }[/math]. The dual distortion function is [math]\displaystyle{ \tilde{g}(x) = 1 - g(1-x) }[/math].[1][2] Distortion functions are used to define distortion risk measures.[2]
Given a probability space [math]\displaystyle{ (\Omega,\mathcal{F},\mathbb{P}) }[/math], then for any random variable [math]\displaystyle{ X }[/math] and any distortion function [math]\displaystyle{ g }[/math] we can define a new probability measure [math]\displaystyle{ \mathbb{Q} }[/math] such that for any [math]\displaystyle{ A \in \mathcal{F} }[/math] it follows that
- [math]\displaystyle{ \mathbb{Q}(A) = g(\mathbb{P}(X \in A)). }[/math] [1]
References
- ↑ 1.0 1.1 Balbás, A.; Garrido, J.; Mayoral, S. (2008). "Properties of Distortion Risk Measures". Methodology and Computing in Applied Probability 11 (3): 385. doi:10.1007/s11009-008-9089-z.
- ↑ 2.0 2.1 Julia L. Wirch; Mary R. Hardy. "Distortion Risk Measures: Coherence and Stochastic Dominance". http://pascal.iseg.utl.pt/~cemapre/ime2002/main_page/papers/JuliaWirch.pdf.
Original source: https://en.wikipedia.org/wiki/Distortion function.
Read more |