Earth:Ice Ic

From HandWiki
Short description: Metastable cubic crystalline variant of ice


Ice Ic (pronounced "ice one c" or "ice I c") is a metastable cubic crystalline variant of ice. Hans König was the first to identify and deduce the structure of ice Ic.[1] The oxygen atoms in ice Ic are arranged in a diamond structure and is extremely similar to ice Ih having nearly identical densities and the same lattice constant along the hexagonal puckered-planes.[2] It forms at temperatures between 130 and 220 kelvins (−143 and −53 degrees Celsius) upon cooling, and can exist up to 240 K (−33 °C) upon warming,[3][4] when it transforms into ice Ih.

Phase diagram of water

Apart from forming from supercooled water,[5] ice Ic has also been reported to form from amorphous ice[2] as well as from the high-pressure ices II, III and V.[6] It can form in and is occasionally present in the upper atmosphere[7] and is believed to be responsible for the observation of Scheiner's halo, a rare ring that occurs near 28 degrees from the Sun or the Moon.[8]

Ordinary water ice is known as ice Ih (in the Bridgman nomenclature). Different types of ice, from ice II to ice XIX,[9] have been created in the laboratory at different temperatures and pressures.

Some authors have expressed doubts whether ice Ic really has a cubic crystal system, claiming that it is merely stacking-disordered ice I (“ice Isd”),[10][11][12] and it has been dubbed the ″most faceted ice phase in a literal and a more general sense.″[13]

However, in 2020, two research groups individually prepared ice Ic without stacking disorder. Komatsu et al. prepared C2 hydrate at high pressure and decompressed it at 100 K to make hydrogen molecules extracted from the structure, resulting in ice Ic without stacking disorder.[14] Del Rosso et al. prepared ice XVII from C0 hydrate and heated it at 0 GPa to obtain pure ice Ic without stacking disorder.[15] Pure ice Ic prepared in the latter method transforms into ice Ih at 226 K with an enthalpy change of -37.7 J/mol.[16]

See also

  • Ice I, for the other crystalline form of ice

References

  1. König, H. (1943). "Eine kubische Eismodifikation" (in de). Zeitschrift für Kristallographie 105 (1): 279–286. doi:10.1524/zkri.1943.105.1.279. 
  2. 2.0 2.1 Dowell, L. G.; Rinfret, A. P. (December 1960). "Low-Temperature Forms of Ice as Studied by X-Ray Diffraction" (in en). Nature 188 (4757): 1144–1148. doi:10.1038/1881144a0. ISSN 0028-0836. Bibcode1960Natur.188.1144D. 
  3. Murray, B.J.; Bertram, A. K. (2006). "Formation and stability of cubic ice in water droplets". Phys. Chem. Chem. Phys. 8 (1): 186–192. doi:10.1039/b513480c. PMID 16482260. Bibcode2006PCCP....8..186M. https://open.library.ubc.ca/media/download/pdf/52383/1.0041852/3. 
  4. Murray, B.J. (2008). "The Enhanced formation of cubic ice in aqueous organic acid droplets". Env. Res. Lett. 3 (2): 025008. doi:10.1088/1748-9326/3/2/025008. Bibcode2008ERL.....3b5008M. 
  5. Mayer, E.; Hallbrucker, A. (1987). "Cubic ice from liquid water". Nature 325 (12): 601–602. doi:10.1038/325601a0. Bibcode1987Natur.325..601M. 
  6. Bertie, J. E.; Calvert, L. D.; Whalley, E. (1963). "Transformations of Ice II, Ice III, and Ice V at Atmospheric Pressure". J. Chem. Phys. 38 (4): 840–846. doi:10.1063/1.1733772. Bibcode1963JChPh..38..840B. 
  7. Murray, Benjamin J.; Knopf, Daniel A.; Bertram, Allan K. (March 2005). "The formation of cubic ice under conditions relevant to Earth's atmosphere" (in en). Nature 434 (7030): 202–205. doi:10.1038/nature03403. ISSN 0028-0836. PMID 15758996. Bibcode2005Natur.434..202M. 
  8. Whalley, E. (1981). "Scheiner's Halo: Evidence for Ice Ic in the Atmosphere". Science 211 (4480): 389–390. doi:10.1126/science.211.4480.389. PMID 17748273. Bibcode1981Sci...211..389W. 
  9. Flatz, Christian; Hohenwarter, Stefan. "Neue kristalline Eisform aus Innsbruck" (in de). https://www.uibk.ac.at/newsroom/neue-kristalline-eisform-aus-innsbruck.html.de. 
  10. Murray, Benjamin J.; Salzmann, Christoph G.; Heymsfield, Andrew J.; Dobbie, Steven; Neely, Ryan R.; Cox, Christopher J. (2015). "Trigonal Ice Crystals in Earth's Atmosphere". Bulletin of the American Meteorological Society 96 (9): 1519–1531. doi:10.1175/BAMS-D-13-00128.1. Bibcode2015BAMS...96.1519M. http://eprints.whiterose.ac.uk/86859/8/MurrayTrigonalIceCrystals.pdf. 
  11. Chaplin, Martin (15 September 2019). "Stacking disordered ice; Ice Isd". London South Bank University. http://www1.lsbu.ac.uk/water/ice1h1c.html. 
  12. Malkin, Tamsin L.; Murray, Benjamin J.; Salzmann, Christoph G.; Molinero, Valeria; Pickering, Steven J.; Whale, Thomas F. (2015). "Stacking disorder in ice I". Physical Chemistry Chemical Physics 17 (1): 60–76. doi:10.1039/C4CP02893G. PMID 25380218. 
  13. Kuhs, W. F.; Sippel, C.; Falenty, A.; Hansen, T. C. (2012). "Extent and relevance of stacking disorder in "ice Ic"". Proceedings of the National Academy of Sciences of the United States of America 109 (52): 21259–21264. doi:10.1073/pnas.1210331110. PMID 23236184. Bibcode2012PNAS..10921259K. 
  14. Komatsu K, Machida S, Noritake F, Hattori T, Sano-Furukawa A, Yamane R (2020). "Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate.". Nat Commun 11 (1): 464. doi:10.1038/s41467-020-14346-5. PMID 32015342. Bibcode2020NatCo..11..464K. 
  15. Del Rosso L, Celli M, Grazzi F, Catti M, Hansen TC, Fortes AD (2020). "Cubic ice Ic without stacking defects obtained from ice XVII.". Nat Mater 19 (6): 663–668. doi:10.1038/s41563-020-0606-y. PMID 32015533. Bibcode2020NatMa..19..663D. https://pubmed.ncbi.nlm.nih.gov/32015533. 
  16. Tonauer CM, Yamashita K, Rosso LD, Celli M, Loerting T (2023). "Enthalpy Change from Pure Cubic Ice Ic to Hexagonal Ice Ih.". J Phys Chem Lett 14 (21): 5055–5060. doi:10.1021/acs.jpclett.3c00408. PMID 37227149.