Exterior (topology)

From HandWiki
Short description: The largest open subset that is "outside of" a given subset.

In topology, the exterior of a subset [math]\displaystyle{ S }[/math] of a topological space [math]\displaystyle{ X }[/math] is the union of all open sets of [math]\displaystyle{ X }[/math] which are disjoint from [math]\displaystyle{ S. }[/math] It is itself an open set and is disjoint from [math]\displaystyle{ S. }[/math] The exterior of [math]\displaystyle{ S }[/math] in [math]\displaystyle{ X }[/math] is often denoted by [math]\displaystyle{ \operatorname{ext}_X S }[/math] or, if [math]\displaystyle{ X }[/math] is clear from context, then possibly also by [math]\displaystyle{ \operatorname{ext} S }[/math] or [math]\displaystyle{ S^{\operatorname{e}}. }[/math]

Equivalent definitions

The exterior is equal to [math]\displaystyle{ X \setminus \operatorname{cl}_X S, }[/math] the complement of the (topological) closure of [math]\displaystyle{ S }[/math] and to the (topological) interior of the complement of [math]\displaystyle{ S }[/math] in [math]\displaystyle{ X. }[/math]

Properties

The topological exterior of a subset [math]\displaystyle{ S \subseteq X }[/math] always satisfies:

[math]\displaystyle{ \operatorname{ext}_X S = \operatorname{int}_X (X \setminus S) }[/math]

and as a consequence, many properties of [math]\displaystyle{ \operatorname{ext}_X S }[/math] can be readily deduced directly from those of the interior [math]\displaystyle{ \operatorname{int}_X S }[/math] and elementary set identities. Such properties include the following:

  • [math]\displaystyle{ \operatorname{ext}_X S }[/math] is an open subset of [math]\displaystyle{ X }[/math] that is disjoint from [math]\displaystyle{ S. }[/math]
  • If [math]\displaystyle{ S \subseteq T }[/math] then [math]\displaystyle{ \operatorname{ext}_X T \subseteq \operatorname{ext}_X S. }[/math]
  • [math]\displaystyle{ \operatorname{ext}_X S }[/math] is equal to the union of all open subsets of [math]\displaystyle{ X }[/math] that are disjoint from [math]\displaystyle{ S. }[/math]
  • [math]\displaystyle{ \operatorname{ext}_X S }[/math] is equal to the largest open subset of [math]\displaystyle{ X }[/math] that is disjoint from [math]\displaystyle{ S. }[/math]

Unlike the interior operator, [math]\displaystyle{ \operatorname{ext}_X }[/math] is not idempotent, although it does have the following property:

  • [math]\displaystyle{ \operatorname{int}_X S \subseteq \operatorname{ext}_X \left(\operatorname{ext}_X S\right). }[/math]

See also

Bibliography