Fibered manifold

From HandWiki
Short description: Concept in differential geometry


In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion [math]\displaystyle{ \pi : E \to B\, }[/math] that is, a surjective differentiable mapping such that at each point [math]\displaystyle{ y \in U }[/math] the tangent mapping [math]\displaystyle{ T_y \pi : T_{y} E \to T_{\pi(y)}B }[/math] is surjective, or, equivalently, its rank equals [math]\displaystyle{ \dim B. }[/math][1]

History

In topology, the words fiber (Faser in German) and fiber space (gefaserter Raum) appeared for the first time in a paper by Herbert Seifert in 1932, but his definitions are limited to a very special case.[2] The main difference from the present day conception of a fiber space, however, was that for Seifert what is now called the base space (topological space) of a fiber (topological) space [math]\displaystyle{ E }[/math] was not part of the structure, but derived from it as a quotient space of [math]\displaystyle{ E. }[/math] The first definition of fiber space is given by Hassler Whitney in 1935 under the name sphere space, but in 1940 Whitney changed the name to sphere bundle.[3][4]

The theory of fibered spaces, of which vector bundles, principal bundles, topological fibrations and fibered manifolds are a special case, is attributed to Seifert, Hopf, Feldbau, Whitney, Steenrod, Ehresmann, Serre, and others.[5][6][7][8][9]

Formal definition

A triple [math]\displaystyle{ (E, \pi, B) }[/math] where [math]\displaystyle{ E }[/math] and [math]\displaystyle{ B }[/math] are differentiable manifolds and [math]\displaystyle{ \pi : E \to B }[/math] is a surjective submersion, is called a fibered manifold.[10] [math]\displaystyle{ E }[/math] is called the total space, [math]\displaystyle{ B }[/math] is called the base.

Examples

  • Every differentiable fiber bundle is a fibered manifold.
  • Every differentiable covering space is a fibered manifold with discrete fiber.
  • In general, a fibered manifold need not be a fiber bundle: different fibers may have different topologies. An example of this phenomenon may be constructed by taking the trivial bundle [math]\displaystyle{ \left(S^1 \times \R, \pi_1, S^1\right) }[/math] and deleting two points in two different fibers over the base manifold [math]\displaystyle{ S^1. }[/math] The result is a new fibered manifold where all the fibers except two are connected.

Properties

  • Any surjective submersion [math]\displaystyle{ \pi : E \to B }[/math] is open: for each open [math]\displaystyle{ V \subseteq E, }[/math] the set [math]\displaystyle{ \pi(V) \subseteq B }[/math] is open in [math]\displaystyle{ B. }[/math]
  • Each fiber [math]\displaystyle{ \pi^{-1}(b) \subseteq E, b \in B }[/math] is a closed embedded submanifold of [math]\displaystyle{ E }[/math] of dimension [math]\displaystyle{ \dim E - \dim B. }[/math][11]
  • A fibered manifold admits local sections: For each [math]\displaystyle{ y \in E }[/math] there is an open neighborhood [math]\displaystyle{ U }[/math] of [math]\displaystyle{ \pi(y) }[/math] in [math]\displaystyle{ B }[/math] and a smooth mapping [math]\displaystyle{ s : U \to E }[/math] with [math]\displaystyle{ \pi \circ s = \operatorname{Id}_U }[/math] and [math]\displaystyle{ s(\pi(y)) = y. }[/math]
  • A surjection [math]\displaystyle{ \pi : E \to B }[/math] is a fibered manifold if and only if there exists a local section [math]\displaystyle{ s : B \to E }[/math] of [math]\displaystyle{ \pi }[/math] (with [math]\displaystyle{ \pi \circ s = \operatorname{Id}_B }[/math]) passing through each [math]\displaystyle{ y \in E. }[/math][12]

Fibered coordinates

Let [math]\displaystyle{ B }[/math] (resp. [math]\displaystyle{ E }[/math]) be an [math]\displaystyle{ n }[/math]-dimensional (resp. [math]\displaystyle{ p }[/math]-dimensional) manifold. A fibered manifold [math]\displaystyle{ (E, \pi, B) }[/math] admits fiber charts. We say that a chart [math]\displaystyle{ (V, \psi) }[/math] on [math]\displaystyle{ E }[/math] is a fiber chart, or is adapted to the surjective submersion [math]\displaystyle{ \pi : E \to B }[/math] if there exists a chart [math]\displaystyle{ (U, \varphi) }[/math] on [math]\displaystyle{ B }[/math] such that [math]\displaystyle{ U = \pi(V) }[/math] and [math]\displaystyle{ u^1 = x^1\circ \pi,\,u^2 = x^2\circ \pi,\,\dots,\,u^n = x^n\circ \pi\, , }[/math] where [math]\displaystyle{ \begin{align}\psi &= \left(u^1,\dots,u^n,y^1,\dots,y^{p-n}\right). \quad y_{0}\in V,\\ \varphi &= \left(x^1,\dots,x^n\right), \quad \pi\left(y_0\right)\in U.\end{align} }[/math]

The above fiber chart condition may be equivalently expressed by [math]\displaystyle{ \varphi\circ\pi = \mathrm{pr}_1\circ\psi, }[/math] where [math]\displaystyle{ {\mathrm {pr}_1} : {\R^n}\times{\R^{p-n}} \to {\R^n}\, }[/math] is the projection onto the first [math]\displaystyle{ n }[/math] coordinates. The chart [math]\displaystyle{ (U, \varphi) }[/math] is then obviously unique. In view of the above property, the fibered coordinates of a fiber chart [math]\displaystyle{ (V, \psi) }[/math] are usually denoted by [math]\displaystyle{ \psi = \left(x^i, y^{\sigma}\right) }[/math] where [math]\displaystyle{ i \in \{1, \ldots, n\}, }[/math] [math]\displaystyle{ \sigma \in \{1, \ldots, m\}, }[/math] [math]\displaystyle{ m = p - n }[/math] the coordinates of the corresponding chart [math]\displaystyle{ (U, \varphi) }[/math] on [math]\displaystyle{ B }[/math] are then denoted, with the obvious convention, by [math]\displaystyle{ \varphi = \left(x_i\right) }[/math] where [math]\displaystyle{ i \in \{1, \ldots, n\}. }[/math]

Conversely, if a surjection [math]\displaystyle{ \pi : E \to B }[/math] admits a fibered atlas, then [math]\displaystyle{ \pi : E \to B }[/math] is a fibered manifold.

Local trivialization and fiber bundles

Let [math]\displaystyle{ E \to B }[/math] be a fibered manifold and [math]\displaystyle{ V }[/math] any manifold. Then an open covering [math]\displaystyle{ \left\{U_{\alpha}\right\} }[/math] of [math]\displaystyle{ B }[/math] together with maps [math]\displaystyle{ \psi : \pi^{-1}\left(U_\alpha\right) \to U_\alpha \times V, }[/math] called trivialization maps, such that [math]\displaystyle{ \mathrm{pr}_1 \circ \psi_\alpha = \pi, \text{ for all } \alpha }[/math] is a local trivialization with respect to [math]\displaystyle{ V. }[/math][13]

A fibered manifold together with a manifold [math]\displaystyle{ V }[/math] is a fiber bundle with typical fiber (or just fiber) [math]\displaystyle{ V }[/math] if it admits a local trivialization with respect to [math]\displaystyle{ V. }[/math] The atlas [math]\displaystyle{ \Psi = \left\{\left(U_{\alpha}, \psi_{\alpha}\right)\right\} }[/math] is then called a bundle atlas.

See also

Notes

References

Historical

  • Ehresmann, C. (1947a). "Sur la théorie des espaces fibrés" (in French). Coll. Top. Alg. Paris C.N.R.S.: 3–15. 
  • Ehresmann, C. (1947b). "Sur les espaces fibrés différentiables" (in French). C. R. Acad. Sci. Paris 224: 1611–1612. 
  • Ehresmann, C. (1955). "Les prolongements d'un espace fibré différentiable" (in French). C. R. Acad. Sci. Paris 240: 1755–1757. 
  • Feldbau, J. (1939). "Sur la classification des espaces fibrés" (in French). C. R. Acad. Sci. Paris 208: 1621–1623. 
  • Seifert, H. (1932). "Topologie dreidimensionaler geschlossener Räume" (in French). Acta Math. 60: 147–238. doi:10.1007/bf02398271. 
  • Serre, J.-P. (1951). "Homologie singulière des espaces fibrés. Applications" (in French). Ann. of Math. 54: 425–505. doi:10.2307/1969485. 
  • Whitney, H. (1935). "Sphere spaces". Proc. Natl. Acad. Sci. USA 21 (7): 464–468. doi:10.1073/pnas.21.7.464. PMID 16588001. Bibcode1935PNAS...21..464W.  open access
  • Whitney, H. (1940). "On the theory of sphere bundles". Proc. Natl. Acad. Sci. USA 26 (2): 148–153. doi:10.1073/pnas.26.2.148. PMID 16588328. Bibcode1940PNAS...26..148W.  open access

External links