Fibered manifold
In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion
[math]\displaystyle{ \pi : E \to B\, }[/math]
that is, a surjective differentiable mapping such that at each point [math]\displaystyle{ y \in U }[/math] the tangent mapping
[math]\displaystyle{ T_y \pi : T_{y} E \to T_{\pi(y)}B }[/math]
is surjective, or, equivalently, its rank equals [math]\displaystyle{ \dim B. }[/math][1]
History
In topology, the words fiber (Faser in German) and fiber space (gefaserter Raum) appeared for the first time in a paper by Herbert Seifert in 1932, but his definitions are limited to a very special case.[2] The main difference from the present day conception of a fiber space, however, was that for Seifert what is now called the base space (topological space) of a fiber (topological) space [math]\displaystyle{ E }[/math] was not part of the structure, but derived from it as a quotient space of [math]\displaystyle{ E. }[/math] The first definition of fiber space is given by Hassler Whitney in 1935 under the name sphere space, but in 1940 Whitney changed the name to sphere bundle.[3][4]
The theory of fibered spaces, of which vector bundles, principal bundles, topological fibrations and fibered manifolds are a special case, is attributed to Seifert, Hopf, Feldbau, Whitney, Steenrod, Ehresmann, Serre, and others.[5][6][7][8][9]
Formal definition
A triple [math]\displaystyle{ (E, \pi, B) }[/math] where [math]\displaystyle{ E }[/math] and [math]\displaystyle{ B }[/math] are differentiable manifolds and [math]\displaystyle{ \pi : E \to B }[/math] is a surjective submersion, is called a fibered manifold.[10] [math]\displaystyle{ E }[/math] is called the total space, [math]\displaystyle{ B }[/math] is called the base.
Examples
- Every differentiable fiber bundle is a fibered manifold.
- Every differentiable covering space is a fibered manifold with discrete fiber.
- In general, a fibered manifold need not be a fiber bundle: different fibers may have different topologies. An example of this phenomenon may be constructed by taking the trivial bundle [math]\displaystyle{ \left(S^1 \times \R, \pi_1, S^1\right) }[/math] and deleting two points in two different fibers over the base manifold [math]\displaystyle{ S^1. }[/math] The result is a new fibered manifold where all the fibers except two are connected.
Properties
- Any surjective submersion [math]\displaystyle{ \pi : E \to B }[/math] is open: for each open [math]\displaystyle{ V \subseteq E, }[/math] the set [math]\displaystyle{ \pi(V) \subseteq B }[/math] is open in [math]\displaystyle{ B. }[/math]
- Each fiber [math]\displaystyle{ \pi^{-1}(b) \subseteq E, b \in B }[/math] is a closed embedded submanifold of [math]\displaystyle{ E }[/math] of dimension [math]\displaystyle{ \dim E - \dim B. }[/math][11]
- A fibered manifold admits local sections: For each [math]\displaystyle{ y \in E }[/math] there is an open neighborhood [math]\displaystyle{ U }[/math] of [math]\displaystyle{ \pi(y) }[/math] in [math]\displaystyle{ B }[/math] and a smooth mapping [math]\displaystyle{ s : U \to E }[/math] with [math]\displaystyle{ \pi \circ s = \operatorname{Id}_U }[/math] and [math]\displaystyle{ s(\pi(y)) = y. }[/math]
- A surjection [math]\displaystyle{ \pi : E \to B }[/math] is a fibered manifold if and only if there exists a local section [math]\displaystyle{ s : B \to E }[/math] of [math]\displaystyle{ \pi }[/math] (with [math]\displaystyle{ \pi \circ s = \operatorname{Id}_B }[/math]) passing through each [math]\displaystyle{ y \in E. }[/math][12]
Fibered coordinates
Let [math]\displaystyle{ B }[/math] (resp. [math]\displaystyle{ E }[/math]) be an [math]\displaystyle{ n }[/math]-dimensional (resp. [math]\displaystyle{ p }[/math]-dimensional) manifold. A fibered manifold [math]\displaystyle{ (E, \pi, B) }[/math] admits fiber charts. We say that a chart [math]\displaystyle{ (V, \psi) }[/math] on [math]\displaystyle{ E }[/math] is a fiber chart, or is adapted to the surjective submersion [math]\displaystyle{ \pi : E \to B }[/math] if there exists a chart [math]\displaystyle{ (U, \varphi) }[/math] on [math]\displaystyle{ B }[/math] such that [math]\displaystyle{ U = \pi(V) }[/math] and [math]\displaystyle{ u^1 = x^1\circ \pi,\,u^2 = x^2\circ \pi,\,\dots,\,u^n = x^n\circ \pi\, , }[/math] where [math]\displaystyle{ \begin{align}\psi &= \left(u^1,\dots,u^n,y^1,\dots,y^{p-n}\right). \quad y_{0}\in V,\\ \varphi &= \left(x^1,\dots,x^n\right), \quad \pi\left(y_0\right)\in U.\end{align} }[/math]
The above fiber chart condition may be equivalently expressed by [math]\displaystyle{ \varphi\circ\pi = \mathrm{pr}_1\circ\psi, }[/math] where [math]\displaystyle{ {\mathrm {pr}_1} : {\R^n}\times{\R^{p-n}} \to {\R^n}\, }[/math] is the projection onto the first [math]\displaystyle{ n }[/math] coordinates. The chart [math]\displaystyle{ (U, \varphi) }[/math] is then obviously unique. In view of the above property, the fibered coordinates of a fiber chart [math]\displaystyle{ (V, \psi) }[/math] are usually denoted by [math]\displaystyle{ \psi = \left(x^i, y^{\sigma}\right) }[/math] where [math]\displaystyle{ i \in \{1, \ldots, n\}, }[/math] [math]\displaystyle{ \sigma \in \{1, \ldots, m\}, }[/math] [math]\displaystyle{ m = p - n }[/math] the coordinates of the corresponding chart [math]\displaystyle{ (U, \varphi) }[/math] on [math]\displaystyle{ B }[/math] are then denoted, with the obvious convention, by [math]\displaystyle{ \varphi = \left(x_i\right) }[/math] where [math]\displaystyle{ i \in \{1, \ldots, n\}. }[/math]
Conversely, if a surjection [math]\displaystyle{ \pi : E \to B }[/math] admits a fibered atlas, then [math]\displaystyle{ \pi : E \to B }[/math] is a fibered manifold.
Local trivialization and fiber bundles
Let [math]\displaystyle{ E \to B }[/math] be a fibered manifold and [math]\displaystyle{ V }[/math] any manifold. Then an open covering [math]\displaystyle{ \left\{U_{\alpha}\right\} }[/math] of [math]\displaystyle{ B }[/math] together with maps [math]\displaystyle{ \psi : \pi^{-1}\left(U_\alpha\right) \to U_\alpha \times V, }[/math] called trivialization maps, such that [math]\displaystyle{ \mathrm{pr}_1 \circ \psi_\alpha = \pi, \text{ for all } \alpha }[/math] is a local trivialization with respect to [math]\displaystyle{ V. }[/math][13]
A fibered manifold together with a manifold [math]\displaystyle{ V }[/math] is a fiber bundle with typical fiber (or just fiber) [math]\displaystyle{ V }[/math] if it admits a local trivialization with respect to [math]\displaystyle{ V. }[/math] The atlas [math]\displaystyle{ \Psi = \left\{\left(U_{\alpha}, \psi_{\alpha}\right)\right\} }[/math] is then called a bundle atlas.
See also
- Connection (fibred manifold) – Operation on fibered manifolds
- Covering space – Type of continuous map in topology
- Fibration – Concept in algebraic topology
- Natural bundle
- Quasi-fibration – Concept from mathematics
- Seifert fiber space – Topological space
Notes
- ↑ Kolář, Michor & Slovák 1993, p. 11
- ↑ Seifert 1932
- ↑ Whitney 1935
- ↑ Whitney 1940
- ↑ Feldbau 1939
- ↑ Ehresmann 1947a
- ↑ Ehresmann 1947b
- ↑ Ehresmann 1955
- ↑ Serre 1951
- ↑ Krupka & Janyška 1990, p. 47
- ↑ Giachetta, Mangiarotti & Sardanashvily 1997, p. 11
- ↑ Giachetta, Mangiarotti & Sardanashvily 1997, p. 15
- ↑ Giachetta, Mangiarotti & Sardanashvily 1997, p. 13
References
- Kolář, Ivan; Michor, Peter; Slovák, Jan (1993), Natural operators in differential geometry, Springer-Verlag, http://www.emis.de/monographs/KSM/kmsbookh.pdf, retrieved 2011-06-15
- Krupka, Demeter; Janyška, Josef (1990), Lectures on differential invariants, Univerzita J. E. Purkyně V Brně, ISBN 80-210-0165-8
- Saunders, D.J. (1989), The geometry of jet bundles, Cambridge University Press, ISBN 0-521-36948-7, https://archive.org/details/geometryofjetbun0000saun
- Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (1997). New Lagrangian and Hamiltonian Methods in Field Theory. World Scientific. ISBN 981-02-1587-8.
Historical
- Ehresmann, C. (1947a). "Sur la théorie des espaces fibrés" (in French). Coll. Top. Alg. Paris C.N.R.S.: 3–15.
- Ehresmann, C. (1947b). "Sur les espaces fibrés différentiables" (in French). C. R. Acad. Sci. Paris 224: 1611–1612.
- Ehresmann, C. (1955). "Les prolongements d'un espace fibré différentiable" (in French). C. R. Acad. Sci. Paris 240: 1755–1757.
- Feldbau, J. (1939). "Sur la classification des espaces fibrés" (in French). C. R. Acad. Sci. Paris 208: 1621–1623.
- Seifert, H. (1932). "Topologie dreidimensionaler geschlossener Räume" (in French). Acta Math. 60: 147–238. doi:10.1007/bf02398271.
- Serre, J.-P. (1951). "Homologie singulière des espaces fibrés. Applications" (in French). Ann. of Math. 54: 425–505. doi:10.2307/1969485.
- Whitney, H. (1935). "Sphere spaces". Proc. Natl. Acad. Sci. USA 21 (7): 464–468. doi:10.1073/pnas.21.7.464. PMID 16588001. Bibcode: 1935PNAS...21..464W.
- Whitney, H. (1940). "On the theory of sphere bundles". Proc. Natl. Acad. Sci. USA 26 (2): 148–153. doi:10.1073/pnas.26.2.148. PMID 16588328. Bibcode: 1940PNAS...26..148W.
External links
- McCleary, J.. "A History of Manifolds and Fibre Spaces: Tortoises and Hares". http://pages.vassar.edu/mccleary/files/2011/04/history.fibre_.spaces.pdf.
Original source: https://en.wikipedia.org/wiki/Fibered manifold.
Read more |