Finite algebra
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (January 2020) (Learn how and when to remove this template message) |
In abstract algebra, an [math]\displaystyle{ R }[/math]-algebra [math]\displaystyle{ A }[/math] is finite if it is finitely generated as an [math]\displaystyle{ R }[/math]-module. An [math]\displaystyle{ R }[/math]-algebra can be thought as a homomorphism of rings [math]\displaystyle{ f\colon R \to A }[/math], in this case [math]\displaystyle{ f }[/math] is called a finite morphism if [math]\displaystyle{ A }[/math] is a finite [math]\displaystyle{ R }[/math]-algebra.[1]
The definition of finite algebra is related to that of algebras of finite type.
Finite morphisms in algebraic geometry
This concept is closely related to that of finite morphism in algebraic geometry; in the simplest case of affine varieties, given two affine varieties [math]\displaystyle{ V\subset\mathbb{A}^n }[/math], [math]\displaystyle{ W\subset\mathbb{A}^m }[/math] and a dominant regular map [math]\displaystyle{ \phi\colon V\to W }[/math], the induced homomorphism of [math]\displaystyle{ \Bbbk }[/math]-algebras [math]\displaystyle{ \phi^*\colon\Gamma(W)\to\Gamma(V) }[/math] defined by [math]\displaystyle{ \phi^*f=f\circ\phi }[/math] turns [math]\displaystyle{ \Gamma(V) }[/math] into a [math]\displaystyle{ \Gamma(W) }[/math]-algebra:
- [math]\displaystyle{ \phi }[/math] is a finite morphism of affine varieties if [math]\displaystyle{ \phi^*\colon\Gamma(W)\to\Gamma(V) }[/math] is a finite morphism of [math]\displaystyle{ \Bbbk }[/math]-algebras.[2]
The generalisation to schemes can be found in the article on finite morphisms.
References
- ↑ Atiyah, Michael Francis; MacDonald, Ian Grant (1994). Introduction to commutative algebra. CRC Press. p. 30. ISBN 9780201407518. https://www.crcpress.com/Introduction-To-Commutative-Algebra/Atiyah/p/book/9780201407518.
- ↑ Perrin, Daniel (2008). Algebraic Geometry An Introduction. Springer. p. 82. ISBN 978-1-84800-056-8. https://www.springer.com/gp/book/9781848000551.
See also
Original source: https://en.wikipedia.org/wiki/Finite algebra.
Read more |