Gaussian binomial coefficient

From HandWiki
Short description: Family of polynomials

In mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or q-binomial coefficients) are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as [math]\displaystyle{ \binom nk_q }[/math] or [math]\displaystyle{ \begin{bmatrix}n\\ k\end{bmatrix}_q }[/math], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over [math]\displaystyle{ \mathbb{F}_q }[/math], a finite field with q elements; i.e. it is the number of points in the finite Grassmannian [math]\displaystyle{ \mathrm{Gr}(k, \mathbb{F}_q^n) }[/math].

Definition

The Gaussian binomial coefficients are defined by:[1]

[math]\displaystyle{ {m \choose r}_q = \frac{(1-q^m)(1-q^{m-1})\cdots(1-q^{m-r+1})} {(1-q)(1-q^2)\cdots(1-q^r)} }[/math]

where m and r are non-negative integers. If r > m, this evaluates to 0. For r = 0, the value is 1 since both the numerator and denominator are empty products.

Although the formula at first appears to be a rational function, it actually is a polynomial, because the division is exact in Z[q]

All of the factors in numerator and denominator are divisible by 1 − q, and the quotient is the q-number:

[math]\displaystyle{ [k]_q=\sum_{0\leq i\lt k}q^i=1+q+q^2+\cdots+q^{k-1}= \begin{cases} \frac{1-q^k}{1-q} & \text{for} & q \neq 1 \\ k & \text{for} & q = 1 \end{cases}, }[/math]

Dividing out these factors gives the equivalent formula

[math]\displaystyle{ {m \choose r}_q=\frac{[m]_q[m-1]_q\cdots[m-r+1]_q}{[1]_q[2]_q\cdots[r]_q}\quad(r\leq m). }[/math]

In terms of the q factorial [math]\displaystyle{ [n]_q!=[1]_q[2]_q\cdots[n]_q }[/math], the formula can be stated as

[math]\displaystyle{ {m \choose r}_q=\frac{[m]_q!}{[r]_q!\,[m-r]_q!}\quad(r\leq m). }[/math]

Substituting q = 1 into [math]\displaystyle{ \tbinom mr_q }[/math] gives the ordinary binomial coefficient [math]\displaystyle{ \tbinom mr }[/math].

The Gaussian binomial coefficient has finite values as [math]\displaystyle{ m\rightarrow \infty }[/math]:

[math]\displaystyle{ {\infty \choose r}_q = \lim_{m\rightarrow \infty} {m \choose r}_q = \frac{1} {(1-q)(1-q^2)\cdots(1-q^r)} = \frac{1}{[r]_q!\,(1-q)^r} }[/math]

Examples

[math]\displaystyle{ {0 \choose 0}_q = {1 \choose 0}_q = 1 }[/math]
[math]\displaystyle{ {1 \choose 1}_q = \frac{1-q}{1-q}=1 }[/math]
[math]\displaystyle{ {2 \choose 1}_q = \frac{1-q^2}{1-q}=1+q }[/math]
[math]\displaystyle{ {3 \choose 1}_q = \frac{1-q^3}{1-q}=1+q+q^2 }[/math]
[math]\displaystyle{ {3 \choose 2}_q = \frac{(1-q^3)(1-q^2)}{(1-q)(1-q^2)}=1+q+q^2 }[/math]
[math]\displaystyle{ {4 \choose 2}_q = \frac{(1-q^4)(1-q^3)}{(1-q)(1-q^2)}=(1+q^2)(1+q+q^2)=1+q+2q^2+q^3+q^4 }[/math]
[math]\displaystyle{ {6 \choose 3}_q = \frac{(1-q^6)(1-q^5)(1-q^4)}{(1-q)(1-q^2)(1-q^3)}=(1+q^2)(1+q^3)(1+q+q^2+q^3+q^4)=1 + q + 2 q^2 + 3 q^3 + 3 q^4 + 3 q^5 + 3 q^6 + 2 q^7 + q^8 + q^9 }[/math]

Combinatorial descriptions

Inversions

One combinatorial description of Gaussian binomial coefficients involves inversions.

The ordinary binomial coefficient [math]\displaystyle{ \tbinom mr }[/math] counts the r-combinations chosen from an m-element set. If one takes those m elements to be the different character positions in a word of length m, then each r-combination corresponds to a word of length m using an alphabet of two letters, say {0,1}, with r copies of the letter 1 (indicating the positions in the chosen combination) and mr letters 0 (for the remaining positions).

So, for example, the [math]\displaystyle{ {4 \choose 2} = 6 }[/math] words using 0s and 1s are [math]\displaystyle{ 0011, 0101, 0110, 1001, 1010, 1100 }[/math].

To obtain the Gaussian binomial coefficient [math]\displaystyle{ \tbinom mr_q }[/math], each word is associated with a factor qd, where d is the number of inversions of the word, where, in this case, an inversion is a pair of positions where the left of the pair holds the letter 1 and the right position holds the letter 0.

With the example above, there is one word with 0 inversions, [math]\displaystyle{ 0011 }[/math], one word with 1 inversion, [math]\displaystyle{ 0101 }[/math], two words with 2 inversions, [math]\displaystyle{ 0110 }[/math], [math]\displaystyle{ 1001 }[/math], one word with 3 inversions, [math]\displaystyle{ 1010 }[/math], and one word with 4 inversions, [math]\displaystyle{ 1100 }[/math]. This is also the number of left-shifts of the 1s from the initial position.

These correspond to the coefficients in [math]\displaystyle{ {4 \choose 2}_q = 1+q+2q^2+q^3+q^4 }[/math].

Another way to see this is to associate each word with a path across a rectangular grid with height r and width mr, going from the bottom left corner to the top right corner. The path takes a step right for each 0 and a step up for each 1. An inversion switches the directions of a step (right+up becomes up+right and vice versa), hence the number of inversions equals the area under the path.

Balls into bins

Let [math]\displaystyle{ B(n,m,r) }[/math] be the number of ways of throwing [math]\displaystyle{ r }[/math] indistinguishable balls into [math]\displaystyle{ m }[/math] indistinguishable bins, where each bin can contain up to [math]\displaystyle{ n }[/math] balls. The Gaussian binomial coefficient can be used to characterize [math]\displaystyle{ B(n,m,r) }[/math]. Indeed,

[math]\displaystyle{ B(n,m,r)= [q^r] {n+m \choose m}_q. }[/math]

where [math]\displaystyle{ [q^r]P }[/math] denotes the coefficient of [math]\displaystyle{ q^r }[/math] in polynomial [math]\displaystyle{ P }[/math] (see also Applications section below).

Properties

Reflection

Like the ordinary binomial coefficients, the Gaussian binomial coefficients are center-symmetric, i.e., invariant under the reflection [math]\displaystyle{ r \rightarrow m-r }[/math]:

[math]\displaystyle{ {m \choose r}_q = {m \choose m-r}_q. }[/math]

In particular,

[math]\displaystyle{ {m \choose 0}_q ={m \choose m}_q=1 \, , }[/math]
[math]\displaystyle{ {m \choose 1}_q ={m \choose m-1}_q=\frac{1-q^m}{1-q}=1+q+ \cdots + q^{m-1} \quad m \ge 1 \, . }[/math]

Limit at q = 1

The evaluation of a Gaussian binomial coefficient at q = 1 is

[math]\displaystyle{ \lim_{q \to 1} \binom{m}{r}_q = \binom{m}{r} }[/math]

i.e. the sum of the coefficients gives the corresponding binomial value.

Degree of polynomial

The degree of [math]\displaystyle{ \binom{m}{r}_q }[/math] is [math]\displaystyle{ \binom{m+1}{2}-\binom{r+1}{2}-\binom{(m-r)+1}{2} = r(m-r) }[/math].

q identities

Analogs of Pascal's identity

The analogs of Pascal's identity for the Gaussian binomial coefficients are:[2]

[math]\displaystyle{ {m \choose r}_q = q^r {m-1 \choose r}_q + {m-1 \choose r-1}_q }[/math]

and

[math]\displaystyle{ {m \choose r}_q = {m-1 \choose r}_q + q^{m-r}{m-1 \choose r-1}_q. }[/math]

When [math]\displaystyle{ q=1 }[/math], these both give the usual binomial identity. We can see that as [math]\displaystyle{ m\to\infty }[/math], both equations remain valid.

The first Pascal analog allows computation of the Gaussian binomial coefficients recursively (with respect to m ) using the initial values

[math]\displaystyle{ {m \choose m}_q ={m \choose 0}_q=1 }[/math]

and also shows that the Gaussian binomial coefficients are indeed polynomials (in q).

The second Pascal analog follows from the first using the substitution [math]\displaystyle{ r \rightarrow m-r }[/math] and the invariance of the Gaussian binomial coefficients under the reflection [math]\displaystyle{ r \rightarrow m-r }[/math].

These identities have natural interpretations in terms of linear algebra. Recall that [math]\displaystyle{ \tbinom{m}{r}_q }[/math] counts r-dimensional subspaces [math]\displaystyle{ V\subset \mathbb{F}_q^m }[/math], and let [math]\displaystyle{ \pi:\mathbb{F}_q^m \to \mathbb{F}_q^{m-1} }[/math] be a projection with one-dimensional nullspace [math]\displaystyle{ E_1 }[/math]. The first identity comes from the bijection which takes [math]\displaystyle{ V\subset \mathbb{F}_q^m }[/math] to the subspace [math]\displaystyle{ V' = \pi(V)\subset \mathbb{F}_q^{m-1} }[/math]; in case [math]\displaystyle{ E_1\not\subset V }[/math], the space [math]\displaystyle{ V' }[/math] is r-dimensional, and we must also keep track of the linear function [math]\displaystyle{ \phi:V'\to E_1 }[/math] whose graph is [math]\displaystyle{ V }[/math]; but in case [math]\displaystyle{ E_1\subset V }[/math], the space [math]\displaystyle{ V' }[/math] is (r−1)-dimensional, and we can reconstruct [math]\displaystyle{ V=\pi^{-1}(V') }[/math] without any extra information. The second identity has a similar interpretation, taking [math]\displaystyle{ V }[/math] to [math]\displaystyle{ V' = V\cap E_{n-1} }[/math] for an (m−1)-dimensional space [math]\displaystyle{ E_{m-1} }[/math], again splitting into two cases.

Proofs of the analogs

Both analogs can be proved by first noting that from the definition of [math]\displaystyle{ \tbinom{m}{r}_q }[/math], we have:

[math]\displaystyle{ \binom{m}{r}_q = \frac{1-q^m}{1-q^{m-r}} \binom{m-1}{r}_q }[/math]

 

 

 

 

(1)

[math]\displaystyle{ \binom{m}{r}_q = \frac{1-q^m}{1-q^r} \binom{m-1}{r-1}_q }[/math]

 

 

 

 

(2)

[math]\displaystyle{ \frac{1-q^r}{1-q^{m-r}}\binom{m-1}{r}_q = \binom{m-1}{r-1}_q }[/math]

 

 

 

 

(3)

As

[math]\displaystyle{ \frac{1-q^m}{1-q^{m-r}}=\frac{1-q^r+q^r-q^m}{1-q^{m-r}}=q^r+\frac{1-q^r}{1-q^{m-r}} }[/math]

Equation (1) becomes:

[math]\displaystyle{ \binom{m}{r}_q = q^r\binom{m-1}{r}_q + \frac{1-q^r}{1-q^{m-r}}\binom{m-1}{r}_q }[/math]

and substituting equation (3) gives the first analog.

A similar process, using

[math]\displaystyle{ \frac{1-q^m}{1-q^r}=q^{m-r}+\frac{1-q^{m-r}}{1-q^r} }[/math]

instead, gives the second analog.

q-binomial theorem

There is an analog of the binomial theorem for q-binomial coefficients, known as the Cauchy binomial theorem:

[math]\displaystyle{ \prod_{k=0}^{n-1} (1+q^kt)=\sum_{k=0}^n q^{k(k-1)/2} {n \choose k}_q t^k . }[/math]

Like the usual binomial theorem, this formula has numerous generalizations and extensions; one such, corresponding to Newton's generalized binomial theorem for negative powers, is

[math]\displaystyle{ \prod_{k=0}^{n-1} \frac{1}{1-q^kt}=\sum_{k=0}^\infty {n+k-1 \choose k}_q t^k. }[/math]

In the limit [math]\displaystyle{ n\rightarrow\infty }[/math], these formulas yield

[math]\displaystyle{ \prod_{k=0}^{\infty} (1+q^kt)=\sum_{k=0}^\infty \frac{q^{k(k-1)/2}t^k}{[k]_q!\,(1-q)^k} }[/math]

and

[math]\displaystyle{ \prod_{k=0}^\infty \frac{1}{1-q^kt}=\sum_{k=0}^\infty \frac{t^k}{[k]_q!\,(1-q)^k} }[/math].

Setting [math]\displaystyle{ t=q }[/math] gives the generating functions for distinct and any parts respectively. (See also Basic hypergeometric series.)

Central q-binomial identity

With the ordinary binomial coefficients, we have:

[math]\displaystyle{ \sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n} }[/math]

With q-binomial coefficients, the analog is:

[math]\displaystyle{ \sum_{k=0}^n q^{k^2}\binom{n}{k}_q^2 = \binom{2n}{n}_q }[/math]

Applications

Gauss originally used the Gaussian binomial coefficients in his determination of the sign of the quadratic Gauss sum.[3]

Gaussian binomial coefficients occur in the counting of symmetric polynomials and in the theory of partitions. The coefficient of qr in

[math]\displaystyle{ {n+m \choose m}_q }[/math]

is the number of partitions of r with m or fewer parts each less than or equal to n. Equivalently, it is also the number of partitions of r with n or fewer parts each less than or equal to m.

Gaussian binomial coefficients also play an important role in the enumerative theory of projective spaces defined over a finite field. In particular, for every finite field Fq with q elements, the Gaussian binomial coefficient

[math]\displaystyle{ {n \choose k}_q }[/math]

counts the number of k-dimensional vector subspaces of an n-dimensional vector space over Fq (a Grassmannian). When expanded as a polynomial in q, it yields the well-known decomposition of the Grassmannian into Schubert cells. For example, the Gaussian binomial coefficient

[math]\displaystyle{ {n \choose 1}_q=1+q+q^2+\cdots+q^{n-1} }[/math]

is the number of one-dimensional subspaces in (Fq)n (equivalently, the number of points in the associated projective space). Furthermore, when q is 1 (respectively −1), the Gaussian binomial coefficient yields the Euler characteristic of the corresponding complex (respectively real) Grassmannian.

The number of k-dimensional affine subspaces of Fqn is equal to

[math]\displaystyle{ q^{n-k} {n \choose k}_q }[/math].

This allows another interpretation of the identity

[math]\displaystyle{ {m \choose r}_q = {m-1 \choose r}_q + q^{m-r}{m-1 \choose r-1}_q }[/math]

as counting the (r − 1)-dimensional subspaces of (m − 1)-dimensional projective space by fixing a hyperplane, counting such subspaces contained in that hyperplane, and then counting the subspaces not contained in the hyperplane; these latter subspaces are in bijective correspondence with the (r − 1)-dimensional affine subspaces of the space obtained by treating this fixed hyperplane as the hyperplane at infinity.

In the conventions common in applications to quantum groups, a slightly different definition is used; the quantum binomial coefficient there is

[math]\displaystyle{ q^{k^2 - n k}{n \choose k}_{q^2} }[/math].

This version of the quantum binomial coefficient is symmetric under exchange of [math]\displaystyle{ q }[/math] and [math]\displaystyle{ q^{-1} }[/math].

See also

References

  1. Mukhin, Eugene, chapter 3
  2. Mukhin, Eugene, chapter 3
  3. Gauß, Carl Friedrich (1808) (in LA). Summatio quarumdam serierum singularium. https://eudml.org/doc/203313.