# Graded (mathematics)

From HandWiki

In mathematics, the term “**graded**” has a number of meanings, mostly related:

In abstract algebra, it refers to a family of concepts:

- An algebraic structure [math]\displaystyle{ X }[/math] is said to be [math]\displaystyle{ I }[/math]-
**graded**for an index set [math]\displaystyle{ I }[/math] if it has a**gradation**or**grading**, i.e. a decomposition into a direct sum [math]\displaystyle{ X = \bigoplus_{i \in I} X_i }[/math] of structures; the elements of [math]\displaystyle{ X_i }[/math] are said to be “**homogeneous**of**degree***i*”.- The index set [math]\displaystyle{ I }[/math] is most commonly [math]\displaystyle{ \N }[/math] or [math]\displaystyle{ \Z }[/math], and may be required to have extra structure depending on the type of [math]\displaystyle{ X }[/math].
- Grading by [math]\displaystyle{ \Z_2 }[/math] (i.e. [math]\displaystyle{ \Z/2\Z }[/math]) is also important; see e.g. signed set (the [math]\displaystyle{ \Z_2 }[/math]-graded sets).
- The
**trivial**([math]\displaystyle{ \Z }[/math]- or [math]\displaystyle{ \N }[/math]-) gradation has [math]\displaystyle{ X_0 = X, X_i = 0 }[/math] for [math]\displaystyle{ i \neq 0 }[/math] and a suitable trivial structure [math]\displaystyle{ 0 }[/math]. - An algebraic structure is said to be doubly graded if the index set is a direct product of sets; the pairs may be called “
**bidegrees**” (e.g. see spectral sequence).

- A [math]\displaystyle{ I }[/math]-graded vector space or
**graded linear space**is thus a vector space with a decomposition into a direct sum [math]\displaystyle{ V = \bigoplus_{i \in I} V_i }[/math] of spaces.- A graded linear map is a map between graded vector spaces respecting their gradations.

- A graded ring is a ring that is a direct sum of abelian groups [math]\displaystyle{ R_i }[/math] such that [math]\displaystyle{ R_i R_j \subseteq R_{i+j} }[/math], with [math]\displaystyle{ i }[/math] taken from some monoid, usually [math]\displaystyle{ \N }[/math] or [math]\displaystyle{ \mathbb{Z} }[/math], or semigroup (for a ring without identity).
- The associated graded ring of a commutative ring [math]\displaystyle{ R }[/math] with respect to a proper ideal [math]\displaystyle{ I }[/math] is [math]\displaystyle{ \operatorname{gr}_I R = \bigoplus_{n \in \N} I^n/I^{n+1} }[/math].

- A graded module is left module [math]\displaystyle{ M }[/math] over a graded ring that is a direct sum [math]\displaystyle{ \bigoplus_{i \in I} M_i }[/math] of modules satisfying [math]\displaystyle{ R_i M_j \subseteq M_{i+j} }[/math].
- The associated graded module of an [math]\displaystyle{ R }[/math]-module [math]\displaystyle{ M }[/math] with respect to a proper ideal [math]\displaystyle{ I }[/math] is [math]\displaystyle{ \operatorname{gr}_I M = \bigoplus_{n \in \N} I^n M/ I^{n+1} M }[/math].
- A differential graded module,
**differential graded [math]\displaystyle{ \mathbb{Z} }[/math]-module**or**DG-module**is a graded module [math]\displaystyle{ M }[/math] with a**differential**[math]\displaystyle{ d\colon M \to M \colon M_i \to M_{i+1} }[/math] making [math]\displaystyle{ M }[/math] a**chain complex**, i.e. [math]\displaystyle{ d \circ d=0 }[/math] .

- A graded algebra is an algebra [math]\displaystyle{ A }[/math] over a ring [math]\displaystyle{ R }[/math] that is graded as a ring; if [math]\displaystyle{ R }[/math] is graded we also require [math]\displaystyle{ A_iR_j \subseteq A_{i+j} \supseteq R_iA_j }[/math].
- The graded Leibniz rule for a map [math]\displaystyle{ d\colon A \to A }[/math] on a graded algebra [math]\displaystyle{ A }[/math] specifies that [math]\displaystyle{ d(a \cdot b) = (da) \cdot b + (-1)^{|a|}a \cdot (db) }[/math] .
- A differential graded algebra,
**DG-algebra**or**DGAlgebra**is a graded algebra that is a differential graded module whose differential obeys the graded Leibniz rule. - A homogeneous derivation on a graded algebra
*A*is a homogeneous linear map of grade*d*= |*D*| on*A*such that [math]\displaystyle{ D(ab)=D(a)b+\varepsilon^{|a||D|}aD(b), \varepsilon = \pm 1 }[/math] acting on homogeneous elements of*A*. - A graded derivation is a sum of homogeneous derivations with the same [math]\displaystyle{ \varepsilon }[/math].
- A
**DGA**is an augmented DG-algebra, or**differential graded augmented algebra**, (see differential graded algebra). - A superalgebra is a [math]\displaystyle{ \mathbb{Z}_2 }[/math]-graded algebra.
- A graded-commutative superalgebra satisfies the “supercommutative” law [math]\displaystyle{ yx = (-1)^{|x| |y|}xy. }[/math] for homogeneous
*x*,*y*, where [math]\displaystyle{ |a| }[/math] represents the “parity” of [math]\displaystyle{ a }[/math], i.e. 0 or 1 depending on the component in which it lies.

- A graded-commutative superalgebra satisfies the “supercommutative” law [math]\displaystyle{ yx = (-1)^{|x| |y|}xy. }[/math] for homogeneous
**CDGA**may refer to the category of augmented differential graded commutative algebras.

- A graded Lie algebra is a Lie algebra that is graded as a vector space by a gradation compatible with its Lie bracket.
- A graded Lie superalgebra is a graded Lie algebra with the requirement for anticommutativity of its Lie bracket relaxed.
- A supergraded Lie superalgebra is a graded Lie superalgebra with an additional super [math]\displaystyle{ \Z_2 }[/math]-gradation.
- A differential graded Lie algebra is a graded vector space over a field of characteristic zero together with a bilinear map [math]\displaystyle{ [,]\colon L_i \otimes L_j \to L_{i+j} }[/math] and a differential [math]\displaystyle{ d\colon L_i \to L_{i-1} }[/math] satisfying [math]\displaystyle{ [x,y] = (-1)^{|x||y|+1}[y,x], }[/math] for any homogeneous elements
*x*,*y*in*L*, the “graded Jacobi identity” and the graded Leibniz rule.

- The
**Graded Brauer group**is a synonym for the Brauer–Wall group [math]\displaystyle{ BW(F) }[/math] classifying finite-dimensional graded central division algebras over the field*F*. - An [math]\displaystyle{ \mathcal{A} }[/math]-graded category for a category [math]\displaystyle{ \mathcal{A} }[/math] is a category [math]\displaystyle{ \mathcal{C} }[/math] together with a functor [math]\displaystyle{ F\colon \mathcal{C} \rightarrow \mathcal{A} }[/math].
- A differential graded category or
**DG category**is a category whose morphism sets form differential graded [math]\displaystyle{ \mathbb{Z} }[/math]-modules.

- A differential graded category or
- Graded manifold – extension of the manifold concept based on ideas coming from supersymmetry and supercommutative algebra, including sections on

In other areas of mathematics:

- Functionally graded elements are used in finite element analysis.
- A graded poset is a poset [math]\displaystyle{ P }[/math] with a
**rank function**[math]\displaystyle{ \rho\colon P \to \N }[/math] compatible with the ordering (i.e. [math]\displaystyle{ \rho(x) \lt \rho(y) \implies x \lt y }[/math]) such that [math]\displaystyle{ y }[/math] covers [math]\displaystyle{ x \implies \rho(y)=\rho(x)+1 }[/math] .

This article includes a list of related items that share the same name (or similar names). If an internal link incorrectly led you here, you may wish to change the link to point directly to the intended article. |

This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |

Original source: https://en.wikipedia.org/wiki/Graded (mathematics).
Read more |