Great inverted snub icosidodecahedron

From HandWiki
Short description: Polyhedron with 92 faces


Great inverted snub icosidodecahedron
Great inverted snub icosidodecahedron.png
Type Uniform star polyhedron
Elements F = 92, E = 150
V = 60 (χ = 2)
Faces by sides (20+60){3}+12{5/2}
Wythoff symbol | 5/3 2 3
Symmetry group I, [5,3]+, 532
Index references U69, C73, W116
Dual polyhedron Great inverted pentagonal hexecontahedron
Vertex figure Great inverted snub icosidodecahedron vertfig.png
34.5/3
Bowers acronym Gisid

File:Great inverted snub icosidodecahedron.stl In geometry, the great inverted snub icosidodecahedron (or great vertisnub icosidodecahedron) is a uniform star polyhedron, indexed as U69. It is given a Schläfli symbol sr{​53,3}, and Coxeter-Dynkin diagram CDel node h.pngCDel 5.pngCDel rat.pngCDel d3.pngCDel node h.pngCDel 3.pngCDel node h.png. In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great snub icosidodecahedron, and vice versa.

Cartesian coordinates

Cartesian coordinates for the vertices of a great inverted snub icosidodecahedron are all the even permutations of [math]\displaystyle{ \begin{array}{crrrc} \Bigl(& \pm\,2\alpha,& \pm\,2,& \pm\,2\beta &\Bigr), \\ \Bigl(& \pm \bigl[\alpha-\beta\varphi-\frac{1}{\varphi}\bigr],& \pm \bigl[\frac{\alpha}{\varphi}+\beta-\varphi\bigr],& \pm \bigl[-\alpha\varphi-\frac{\beta}{\varphi}-1\bigr] &\Bigr), \\ \Bigl(& \pm \bigl[\alpha\varphi-\frac{\beta}{\varphi}+1\bigr],& \pm \bigl[-\alpha-\beta\varphi+\frac{1}{\varphi}\bigr],& \pm \bigl[-\frac{\alpha}{\varphi}+\beta+\varphi\bigr] &\Bigr), \\ \Bigl(& \pm \bigl[\alpha\varphi-\frac{\beta}{\varphi}-1\bigr],& \pm \bigl[\alpha+\beta\varphi+\frac{1}{\varphi}\bigr],& \pm \bigl[-\frac{\alpha}{\varphi}+\beta-\varphi\bigr] &\Bigr), \\ \Bigl(& \pm \bigl[\alpha-\beta\varphi+\frac{1}{\varphi}\bigr],& \pm \bigl[-\frac{\alpha}{\varphi}-\beta-\varphi\bigr],& \pm \bigl[-\alpha\varphi-\frac{\beta}{\varphi}+1\bigr] &\Bigr), \\ \end{array} }[/math] with an even number of plus signs, where [math]\displaystyle{ \begin{align} \alpha &= \xi - \frac{1}{\xi} \\[4pt] \beta &= -\frac{\xi}{\varphi} + \frac{1}{\varphi^2} - \frac{1}{\xi\varphi}, \end{align} }[/math]

where [math]\displaystyle{ \varphi = \tfrac{1+ \sqrt 5}{2} }[/math] is the golden ratio and ξ is the greater positive real solution to: [math]\displaystyle{ \xi^3 - 2\xi = -\tfrac{1}{\varphi} \quad \implies \quad \xi \approx 1.2224727. }[/math] Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.

The circumradius for unit edge length is [math]\displaystyle{ R = \frac12\sqrt{\frac{2-x}{1-x}} = 0.816081\dots }[/math] where x is the appropriate root of [math]\displaystyle{ x^3 + 2x^2 = \left( \frac{1\pm\sqrt5}2 \right)^2. }[/math] The four positive real roots of the sextic in R2, [math]\displaystyle{ 4096R^{12} - 27648R^{10} + 47104R^8 - 35776R^6 + 13872R^4 - 2696R^2 + 209 = 0 }[/math] are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74).

Related polyhedra

Great inverted pentagonal hexecontahedron

Great inverted pentagonal hexecontahedron
DU69 great inverted pentagonal hexecontahedron.png
Type Star polyhedron
Face DU69 facets.png
Elements F = 60, E = 150
V = 92 (χ = 2)
Symmetry group I, [5,3]+, 532
Index references DU69
dual polyhedron Great inverted snub icosidodecahedron

File:Great inverted pentagonal hexecontahedron.stl The great inverted pentagonal hexecontahedron (or petaloidal trisicosahedron) is a nonconvex isohedral polyhedron. It is composed of 60 concave pentagonal faces, 150 edges and 92 vertices.

It is the dual of the uniform great inverted snub icosidodecahedron.

Proportions

Denote the golden ratio by [math]\displaystyle{ \phi }[/math]. Let [math]\displaystyle{ \xi\approx 0.252\,780\,289\,27 }[/math] be the smallest positive zero of the polynomial [math]\displaystyle{ P = 8x^3-8x^2+\phi^{-2} }[/math]. Then each pentagonal face has four equal angles of [math]\displaystyle{ \arccos(\xi)\approx 75.357\,903\,417\,42^{\circ} }[/math] and one angle of [math]\displaystyle{ 360^{\circ}-\arccos(-\phi^{-1}+\phi^{-2}\xi)\approx 238.568\,386\,330\,33^{\circ} }[/math]. Each face has three long and two short edges. The ratio [math]\displaystyle{ l }[/math] between the lengths of the long and the short edges is given by

[math]\displaystyle{ l = \frac{2-4\xi^2}{1-2\xi}\approx 3.528\,053\,034\,81 }[/math].

The dihedral angle equals [math]\displaystyle{ \arccos(\xi/(\xi+1))\approx 78.359\,199\,060\,62^{\circ} }[/math]. Part of each face lies inside the solid, hence is invisible in solid models. The other two zeroes of the polynomial [math]\displaystyle{ P }[/math] play a similar role in the description of the great pentagonal hexecontahedron and the great pentagrammic hexecontahedron.

See also

References

External links