Heptagonal triangle

From HandWiki
Short description: Obtuse triangle formed by the side and diagonals of a regular heptagon
  Regular heptagon
   Longer diagonals
  Shorter diagonals
Each of the fourteen congruent heptagonal triangles has one green side, one blue side, and one red side.

In Euclidean geometry, a heptagonal triangle is an obtuse, scalene triangle whose vertices coincide with the first, second, and fourth vertices of a regular heptagon (from an arbitrary starting vertex). Thus its sides coincide with one side and the adjacent shorter and longer diagonals of the regular heptagon. All heptagonal triangles are similar (have the same shape), and so they are collectively known as the heptagonal triangle. Its angles have measures π/7,2π/7, and 4π/7, and it is the only triangle with angles in the ratios 1:2:4. The heptagonal triangle has various remarkable properties.

Key points

The heptagonal triangle's nine-point center is also its first Brocard point.[1]:Propos. 12

The second Brocard point lies on the nine-point circle.[2]:p. 19

The circumcenter and the Fermat points of a heptagonal triangle form an equilateral triangle.[1]:Thm. 22

The distance between the circumcenter O and the orthocenter H is given by[2]:p. 19

OH=R2,

where R is the circumradius. The squared distance from the incenter I to the orthocenter is[2]:p. 19

IH2=R2+4r22,

where r is the inradius.

The two tangents from the orthocenter to the circumcircle are mutually perpendicular.[2]:p. 19

Relations of distances

Sides

The heptagonal triangle's sides a < b < c coincide respectively with the regular heptagon's side, shorter diagonal, and longer diagonal. They satisfy[3]:Lemma 1

a2=c(cb),b2=a(c+a),c2=b(a+b),1a=1b+1c

(the latter[2]:p. 13 being the optic equation) and hence

ab+ac=bc,

and[3]:Coro. 2

b3+2b2cbc2c3=0,
c32c2aca2+a3=0,
a32a2bab2+b3=0.

Thus –b/c, c/a, and a/b all satisfy the cubic equation

t32t2t+1=0.

However, no algebraic expressions with purely real terms exist for the solutions of this equation, because it is an example of casus irreducibilis.

The approximate relation of the sides is

b1.80193a,c2.24698a.

We also have[4][5]

a2bc,b2ca,c2ab

satisfy the cubic equation

t3+4t2+3t1=0.

We also have[4]

a3bc2,b3ca2,c3ab2

satisfy the cubic equation

t3t29t+1=0.

We also have[4]

a3b2c,b3c2a,c3a2b

satisfy the cubic equation

t3+5t28t+1=0.

We also have[2]:p. 14

b2a2=ac,
c2b2=ab,
a2c2=bc,

and[2]:p. 15

b2a2+c2b2+a2c2=5.

We also have[4]

abbc+ca=0,
a3bb3c+c3a=0,
a4b+b4cc4a=0,
a11b3b11c3+c11a3=0.

There are no other (m, n), m, n > 0, m, n < 2000 such that[citation needed]

ambn±bmcn±cman=0.

Altitudes

The altitudes ha, hb, and hc satisfy

ha=hb+hc[2]:p. 13

and

ha2+hb2+hc2=a2+b2+c22.[2]:p. 14

The altitude from side b (opposite angle B) is half the internal angle bisector wA of A:[2]:p. 19

2hb=wA.

Here angle A is the smallest angle, and B is the second smallest.

Internal angle bisectors

We have these properties of the internal angle bisectors wA,wB, and wC of angles A, B, and C respectively:[2]:p. 16

wA=b+c,
wB=ca,
wC=ba.

Circumradius, inradius, and exradius

The triangle's area is[6]

A=74R2,

where R is the triangle's circumradius.

We have[2]:p. 12

a2+b2+c2=7R2.

We also have[7]

a4+b4+c4=21R4.
a6+b6+c6=70R6.

The ratio r /R of the inradius to the circumradius is the positive solution of the cubic equation[6]

8x3+28x2+14x7=0.

In addition,[2]:p. 15

1a2+1b2+1c2=2R2.

We also have[7]

1a4+1b4+1c4=2R4.
1a6+1b6+1c6=177R6.

In general for all integer n,

a2n+b2n+c2n=g(n)(2R)2n

where

g(1)=8,g(0)=3,g(1)=7

and

g(n)=7g(n1)14g(n2)+7g(n3).

We also have[7]

2b2a2=7bR,2c2b2=7cR,2a2c2=7aR.

We also have[4]

a3c+b3ac3b=7R4,
a4cb4a+c4b=77R5,
a11c3+b11a3c11b3=7317R14.

The exradius ra corresponding to side a equals the radius of the nine-point circle of the heptagonal triangle.[2]:p. 15

Orthic triangle

The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one).[2]:pp. 12–13

Trigonometric properties

Trigonometric identities

The various trigonometric identities associated with the heptagonal triangle include these:[2]:pp. 13–14[6][7]

A=π7cosA=b2aB=2π7cosB=c2bC=4π7cosC=a2c[4]:Proposition 10

sinA×sinB×sinC=78sinAsinBsinC=72cosA×cosB×cosC=18tanA×tanB×tanC=7tanA+tanB+tanC=7cotA+cotB+cotC=7sin2A×sin2B×sin2C=764sin2A+sin2B+sin2C=74cos2A+cos2B+cos2C=54tan2A+tan2B+tan2C=21sec2A+sec2B+sec2C=24csc2A+csc2B+csc2C=8cot2A+cot2B+cot2C=5sin4A+sin4B+sin4C=2116cos4A+cos4B+cos4C=1316sec4A+sec4B+sec4C=416csc4A+csc4B+csc4C=32

tanA4sinB=7tanB4sinC=7tanC+4sinA=7[7][8]

cot2A=12tanC7cot2B=12tanA7cot2C=12tanB7[4]

cosA=12+47×sin3CsecA=2+4×cosCsecA=68×sin2BsecA=4167×sin3BcotA=7+87×sin2BcotA=37+47×cosBsin2A=12+12×cosBcos2A=34+27×sin3Acot2A=3+87×sinAsin3A=78+74×cosBcsc3A=67+27×tan2C[4]

sinAsinBsinBsinC+sinCsinA=0 sin3BsinCsin3CsinAsin3AsinB=0sinBsin3CsinCsin3AsinAsin3B=724sin4BsinCsin4CsinA+sin4AsinB=0sinBsin4C+sinCsin4AsinAsin4B=7725 sin11Bsin3Csin11Csin3Asin11Asin3B=0sin3Bsin11Csin3Csin11Asin3Asin11B=7317214[9]

Cubic polynomials

The cubic equation 64y3112y2+56y7=0 has solutions[2]:p. 14 sin2A, sin2B, sin2C.

The positive solution of the cubic equation x3+x22x1=0 equals 2cosB.[10]:p. 186–187

The roots of the cubic equation x372x2+78=0 are[4] sin2A, sin2B, sin2C.

The roots of the cubic equation x372x2+78=0 are sinA, sinB, sinC.

The roots of the cubic equation x3+12x212x18=0 are cosA, cosB, cosC.

The roots of the cubic equation x3+7x27x+7=0 are tanA, tanB, tanC.

The roots of the cubic equation x321x2+35x7=0 are tan2A, tan2B, tan2C.

Sequences

For an integer n, let S(n)=(sinA)n+sinnB+sinnCC(n)=(cosA)n+cosnB+cosnCT(n)=tannA+tannB+tannC

Value of n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
S(n)  3  72 722 72 7324 7724 7525 72727 72528 725729 72929 72137211 7233211 723729 745214 721797215 73131216 7337212 73493218 731817218 7519219
S(n) 3 0 23 23377 25 25577 26177 277 29117 21033772 210297 21411772 21226972 213117772 214517 22117773 21723772 2171445773 219220373 2191919773 220585173
C(n) 3 12 54 12 1316 12 1932 57128 117256 193512 185512
C(n) 3 4 24 88 416 1824 8256 36992 166400 747520 3359744
T(n) 3 7 73 317 753 7877 71011 722397 722771 7321197 7253189
T(n) 3 7 5 2577 19 10377 5637 797 24217 13297772 104357

Ramanujan identities

We also have Ramanujan type identities,[7][11]

2sin2A3+2sin2B3+2sin2C3=718×73+6+3(53733+43733)32sin2A3+2sin2B3+2sin2C3=718×73+6+3(53733+43733)34sin22A3+4sin22B3+4sin22C3=4918×493+6+3(12+3(493+273)3+11+3(493+273)3)32cos2A3+2cos2B3+2cos2C3=537334cos22A3+4cos22B3+4cos22C3=11+3(273+493)3tan2A3+tan2B3+tan2C3=718×73+6+3(5+3(73493)3+3+3(73493)3)3tan22A3+tan22B3+tan22C3=4918×3493+6+3(89+3(3493+573)3+25+3(3493+573)3)3

12sin2A3+12sin2B3+12sin2C3=1718×6+3(53733+43733)314sin22A3+14sin22B3+14sin22C3=14918×273+6+3(12+3(493+273)3+11+3(493+273)3)312cos2A3+12cos2B3+12cos2C3=4373314cos22A3+14cos22B3+14cos22C3=12+3(273+493)31tan2A3+1tan2B3+1tan2C3=1718×493+6+3(5+3(73493)3+3+3(73493)3)31tan22A3+1tan22B3+1tan22C3=14918×573+6+3(89+3(3493+573)3+25+3(3493+573)3)3

cos2Acos2B3+cos2Bcos2C3+cos2Ccos2A3=73cos2Bcos2A3+cos2Ccos2B3+cos2Acos2C3=0cos42Bcos2A3+cos42Ccos2B3+cos42Acos2C3=4932cos52Acos22B3+cos52Bcos22C3+cos52Ccos22A3=0cos52Bcos22A3+cos52Ccos22B3+cos52Acos22C3=3×732cos142Acos52B3+cos142Bcos52C3+cos142Ccos52A3=0cos142Bcos52A3+cos142Ccos52B3+cos142Acos52C3=61×738.[9]

References

  1. 1.0 1.1 Paul Yiu, "Heptagonal Triangles and Their Companions", Forum Geometricorum 9, 2009, 125–148. http://forumgeom.fau.edu/FG2009volume9/FG200912.pdf
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Leon Bankoff and Jack Garfunkel, "The heptagonal triangle", Mathematics Magazine 46 (1), January 1973, 7–19.
  3. 3.0 3.1 Abdilkadir Altintas, "Some Collinearities in the Heptagonal Triangle", Forum Geometricorum 16, 2016, 249–256.http://forumgeom.fau.edu/FG2016volume16/FG201630.pdf
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Wang, Kai. “Heptagonal Triangle and Trigonometric Identities”, Forum Geometricorum 19, 2019, 29–38.
  5. Wang, Kai. https://www.researchgate.net/publication/335392159_On_cubic_equations_with_zero_sums_of_cubic_roots_of_roots
  6. 6.0 6.1 6.2 Weisstein, Eric W. "Heptagonal Triangle." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HeptagonalTriangle.html
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Wang, Kai. https://www.researchgate.net/publication/327825153_Trigonometric_Properties_For_Heptagonal_Triangle
  8. Victor Hugo Moll, An elementary trigonometric equation, https://arxiv.org/abs/0709.3755, 2007
  9. 9.0 9.1 Wang, Kai. https://www.researchgate.net/publication/336813631_Topics_of_Ramanujan_type_identities_for_PI7
  10. Gleason, Andrew Mattei (March 1988). "Angle trisection, the heptagon, and the triskaidecagon". The American Mathematical Monthly 95 (3): 185–194. doi:10.2307/2323624. Archived from the original. Error: If you specify |archiveurl=, you must also specify |archivedate=. https://web.archive.org/web/20151219180208/http://apollonius.math.nthu.edu.tw/d1/ne01/jyt/linkjstor/regular/7.pdf#3. 
  11. Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007).