Hurwitz quaternion order

From HandWiki
Short description: Concept in mathematics

The Hurwitz quaternion order is a specific order in a quaternion algebra over a suitable number field. The order is of particular importance in Riemann surface theory, in connection with surfaces with maximal symmetry, namely the Hurwitz surfaces.[1] The Hurwitz quaternion order was studied in 1967 by Goro Shimura,[2] but first explicitly described by Noam Elkies in 1998.[3] For an alternative use of the term, see Hurwitz quaternion (both usages are current in the literature).

Definition

Let [math]\displaystyle{ K }[/math] be the maximal real subfield of [math]\displaystyle{ \mathbb{Q} }[/math][math]\displaystyle{ (\rho) }[/math] where [math]\displaystyle{ \rho }[/math] is a 7th-primitive root of unity. The ring of integers of [math]\displaystyle{ K }[/math] is [math]\displaystyle{ \mathbb{Z}[\eta] }[/math], where the element [math]\displaystyle{ \eta=\rho+ \bar\rho }[/math] can be identified with the positive real [math]\displaystyle{ 2\cos(\tfrac{2\pi}{7}) }[/math]. Let [math]\displaystyle{ D }[/math] be the quaternion algebra, or symbol algebra

[math]\displaystyle{ D:=\,(\eta,\eta)_{K}, }[/math]

so that [math]\displaystyle{ i^2=j^2=\eta }[/math] and [math]\displaystyle{ ij=-ji }[/math] in [math]\displaystyle{ D. }[/math] Also let [math]\displaystyle{ \tau=1+\eta+\eta^2 }[/math] and [math]\displaystyle{ j'=\tfrac{1}{2}(1+\eta i + \tau j) }[/math]. Let

[math]\displaystyle{ \mathcal{Q}_{\mathrm{Hur}}=\mathbb{Z}[\eta][i,j,j']. }[/math]

Then [math]\displaystyle{ \mathcal{Q}_{\mathrm{Hur}} }[/math] is a maximal order of [math]\displaystyle{ D }[/math], described explicitly by Noam Elkies.[4]

Module structure

The order [math]\displaystyle{ Q_{\mathrm{Hur}} }[/math] is also generated by elements

[math]\displaystyle{ g_2= \tfrac{1}{\eta}ij }[/math]

and

[math]\displaystyle{ g_3=\tfrac{1}{2}(1+(\eta^2-2)j+(3-\eta^2)ij). }[/math]

In fact, the order is a free [math]\displaystyle{ \mathbb Z[\eta] }[/math]-module over the basis [math]\displaystyle{ \,1,g_2,g_3, g_2g_3 }[/math]. Here the generators satisfy the relations

[math]\displaystyle{ g_2^2=g_3^3= (g_2g_3)^7=-1, }[/math]

which descend to the appropriate relations in the (2,3,7) triangle group, after quotienting by the center.

Principal congruence subgroups

The principal congruence subgroup defined by an ideal [math]\displaystyle{ I \subset \mathbb{Z}[\eta] }[/math] is by definition the group

[math]\displaystyle{ \mathcal{Q}^1_{\mathrm{Hur}}(I) = \{x \in \mathcal{Q}_{\mathrm{Hur}}^1 : x \equiv 1 ( }[/math]mod [math]\displaystyle{ I\mathcal{Q}_{\mathrm{Hur}})\}, }[/math]

namely, the group of elements of reduced norm 1 in [math]\displaystyle{ \mathcal{Q}_{\mathrm{Hur}} }[/math] equivalent to 1 modulo the ideal [math]\displaystyle{ I\mathcal{Q}_{\mathrm{Hur}} }[/math]. The corresponding Fuchsian group is obtained as the image of the principal congruence subgroup under a representation to PSL(2,R).

Application

The order was used by Katz, Schaps, and Vishne[5] to construct a family of Hurwitz surfaces satisfying an asymptotic lower bound for the systole: [math]\displaystyle{ sys \gt \frac{4}{3}\log g }[/math] where g is the genus, improving an earlier result of Peter Buser and Peter Sarnak;[6] see systoles of surfaces.

See also

References

  1. Vogeler, Roger (2003), On the geometry of Hurwitz surfaces, Florida State University, http://purl.flvc.org/fsu/fd/FSU_migr_etd-4544 .
  2. "Construction of class fields and zeta functions of algebraic curves", Annals of Mathematics, Second Series 85 (1): 58–159, 1967, doi:10.2307/1970526 .
  3. "Shimura curve computations", Algorithmic number theory (Portland, OR, 1998), Lecture Notes in Computer Science, 1423, Berlin: Springer-Verlag, 1998, pp. 1–47, doi:10.1007/BFb0054850 .
  4. Levi, Sylvio, ed. (1999), "The Klein quartic in number theory", The Eightfold Way: The Beauty of Klein's Quartic Curve, Mathematical Sciences Research Institute publications, 35, Cambridge University Press, pp. 51–101, http://library.msri.org/books/Book35/files/elkies.pdf .
  5. "Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups", Journal of Differential Geometry 76 (3): 399–422, 2007, doi:10.4310/jdg/1180135693, http://projecteuclid.org/getRecord?id=euclid.jdg/1180135693 .
  6. "On the period matrix of a Riemann surface of large genus", Inventiones Mathematicae 117 (1): 27–56, 1994, doi:10.1007/BF01232233, Bibcode1994InMat.117...27B. With an appendix by J. H. Conway and N. J. A. Sloane.