Hypersimplex

From HandWiki
Standard hypersimplices in [math]\displaystyle{ \mathbb{R}^3 }[/math]
2D-simplex.svg 2D-hypersimplex 011.png
[math]\displaystyle{ \Delta_{3,1} }[/math]
Hyperplane: [math]\displaystyle{ x+y+z=1 }[/math]
[math]\displaystyle{ \Delta_{3,2} }[/math]
Hyperplane: [math]\displaystyle{ x+y+z=2 }[/math]

In polyhedral combinatorics, the hypersimplex [math]\displaystyle{ \Delta_{d,k} }[/math] is a convex polytope that generalizes the simplex. It is determined by two integers [math]\displaystyle{ d }[/math] and [math]\displaystyle{ k }[/math], and is defined as the convex hull of the [math]\displaystyle{ d }[/math]-dimensional vectors whose coefficients consist of [math]\displaystyle{ k }[/math] ones and [math]\displaystyle{ d-k }[/math] zeros. Equivalently, [math]\displaystyle{ \Delta_{d,k} }[/math] can be obtained by slicing the [math]\displaystyle{ d }[/math]-dimensional unit hypercube [math]\displaystyle{ [0,1]^d }[/math] with the hyperplane of equation [math]\displaystyle{ x_1+\cdots+x_d=k }[/math] and, for this reason, it is a [math]\displaystyle{ (d-1) }[/math]-dimensional polytope when [math]\displaystyle{ 0\lt k\lt d }[/math].[1]

Properties

The number of vertices of [math]\displaystyle{ \Delta_{d,k} }[/math] is [math]\displaystyle{ \tbinom d k }[/math].[1] The graph formed by the vertices and edges of the hypersimplex [math]\displaystyle{ \Delta_{d,k} }[/math] is the Johnson graph [math]\displaystyle{ J(d,k) }[/math].[2]

Alternative constructions

An alternative construction (for [math]\displaystyle{ k\leq{d/2} }[/math]) is to take the convex hull of all [math]\displaystyle{ (d-1) }[/math]-dimensional [math]\displaystyle{ (0,1) }[/math]-vectors that have either [math]\displaystyle{ k-1 }[/math] or [math]\displaystyle{ k }[/math] nonzero coordinates. This has the advantage of operating in a space that is the same dimension as the resulting polytope, but the disadvantage that the polytope it produces is less symmetric (although combinatorially equivalent to the result of the other construction).

The hypersimplex [math]\displaystyle{ \Delta_{d,k} }[/math] is also the matroid polytope for a uniform matroid with [math]\displaystyle{ d }[/math] elements and rank [math]\displaystyle{ k }[/math].[3]

Examples

The hypersimplex [math]\displaystyle{ \Delta_{d,1} }[/math] is a [math]\displaystyle{ (d-1) }[/math]-simplex (and therefore, it has [math]\displaystyle{ d }[/math] vertices). The hypersimplex [math]\displaystyle{ \Delta_{4,2} }[/math] is an octahedron, and the hypersimplex [math]\displaystyle{ \Delta_{5,2} }[/math] is a rectified 5-cell.

Generally, the hypersimplex, [math]\displaystyle{ \Delta_{d,k} }[/math], corresponds to a uniform polytope, being the [math]\displaystyle{ (k-1) }[/math]-rectified [math]\displaystyle{ (d-1) }[/math]-dimensional simplex, with vertices positioned at the center of all the [math]\displaystyle{ (k-1) }[/math]-dimensional faces of a [math]\displaystyle{ (d-1) }[/math]-dimensional simplex.

Examples (d = 3...6)
Name Equilateral
triangle
Tetrahedron
(3-simplex)
Octahedron 5-cell
(4-simplex)
Rectified
5-cell
5-simplex Rectified
5-simplex
Birectified
5-simplex
Δd,k = (d,k)
= (d,d − k)
(3,1)
(3,2)
(4,1)
(4,3)
(4,2) (5,1)
(5,4)
(5,2)
(5,3)
(6,1)
(6,5)
(6,2)
(6,4)
(6,3)
Vertices
[math]\displaystyle{ \tbinom{d}{k} }[/math]
3 4 6 5 10 6 15 20
d-coordinates (0,0,1)
(0,1,1)
(0,0,0,1)
(0,1,1,1)
(0,0,1,1) (0,0,0,0,1)
(0,1,1,1,1)
(0,0,0,1,1)
(0,0,1,1,1)
(0,0,0,0,0,1)
(0,1,1,1,1,1)
(0,0,0,0,1,1)
(0,0,1,1,1,1)
(0,0,0,1,1,1)
Image Regular triangle.svg Uniform polyhedron-33-t0.png Uniform polyhedron-33-t1.png Schlegel wireframe 5-cell.png Schlegel half-solid rectified 5-cell.png
Graphs 2-simplex t0.svg
J(3,1) = K2
3-simplex t0.svg
J(4,1) = K3
3-cube t2.svg
J(4,2) = T(6,3)
4-simplex t0.svg
J(5,1) = K4
4-simplex t1.svg
J(5,2)
5-simplex t0.svg
J(6,1) = K5
5-simplex t1 A4.svg
J(6,2)
5-simplex t2 A4.svg
J(6,3)
Coxeter
diagrams
CDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Schläfli
symbols
{3}
= r{3}
{3,3}
= 2r{3,3}
r{3,3} = {3,4} {3,3,3}
= 3r{3,3,3}
r{3,3,3}
= 2r{3,3,3}
{3,3,3,3}
= 4r{3,3,3,3}
r{3,3,3,3}
= 3r{3,3,3,3}
2r{3,3,3,3}
Facets { } {3} {3,3} {3,3}, {3,4} {3,3,3} {3,3,3}, r{3,3,3} r{3,3,3}

History

The hypersimplices were first studied and named in the computation of characteristic classes (an important topic in algebraic topology), by (Gabrièlov Gelʹfand).[4][5]

References

  1. 1.0 1.1 Miller, Ezra; Reiner, Victor; Sturmfels, Bernd, Geometric Combinatorics, IAS/Park City mathematics series, 13, American Mathematical Society, p. 655, ISBN 9780821886953, https://books.google.com/books?id=W_SPdwfPTw8C&pg=PA655 .
  2. Rispoli, Fred J. (2008), The graph of the hypersimplex, Bibcode2008arXiv0811.2981R .
  3. "Cardinality homogeneous set systems, cycles in matroids, and associated polytopes", The Sharpest Cut: The Impact of Manfred Padberg and His Work, MPS/SIAM Ser. Optim., SIAM, Philadelphia, PA, 2004, pp. 99–120 . See in particular the remarks following Prop. 8.20 on p. 114.
  4. Gabrièlov, A. M. (1975), "Combinatorial computation of characteristic classes. I, II", Akademija Nauk SSSR 9 (2): 12–28; ibid. 9 (1975), no. 3, 5–26 .
  5. Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1995, p. 20, doi:10.1007/978-1-4613-8431-1, ISBN 0-387-94365-X .

Further reading