IEEE 802.11 (legacy mode)
IEEE 802.11 (legacy mode) – or more correctly IEEE 802.11-1997 or IEEE 802.11-1999 – refer to the original version of the IEEE 802.11 wireless networking standard released in 1997 and clarified in 1999. Most of the protocols described by this early version are rarely used today.
Description
It specified two raw data rates of 1 and 2 megabits per second (Mbit/s) to be transmitted via infrared (IR) signals or by either frequency hopping or direct-sequence spread spectrum (DSSS) in the Industrial Scientific Medical frequency band at 2.4 GHz. IR remained a part of the standard until IEEE 802.11-2016, but was never implemented.[citation needed]
The original standard also defines carrier sense 0 access with collision avoidance (CSMA/CA) as the medium access method. A significant percentage of the available raw channel capacity is sacrificed (via the CSMA/CA mechanisms) in order to improve the reliability of data transmissions under diverse and adverse environmental conditions.
IEEE 802.11-1999 also introduced the binary time unit TU defined as 1024 µs.[1]
At least six different, somewhat-interoperable, commercial products appeared using the original specification, from companies like Alvarion (PRO.11 and BreezeAccess-II), BreezeCom, Digital / Cabletron (RoamAbout), Lucent, Netwave Technologies (AirSurfer Plus and AirSurfer Pro), Symbol Technologies (Spectrum25), and Proxim Wireless (OpenAir and Rangela2). A weakness of this original specification was that it offered so many choices that interoperability was sometimes challenging to realize. It is really more of a "beta specification" than a rigid specification, initially allowing individual product vendors the flexibility to differentiate their products but with little to no inter-vendor operability.
The DSSS version of legacy 802.11 was rapidly supplemented (and popularized) by the 802.11b amendment in 1999, which increased the bit rate to 11 Mbit/s. Widespread adoption of 802.11 networks only occurred after the release of 802.11b which resulted in multiple interoperable products becoming available from multiple vendors. Consequently, comparatively few networks were implemented on the 802.11-1997 standard.
Comparison
IEEE 802.11 network PHY standards
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency range, or type |
PHY | Protocol | Release date[2] |
Frequency | Bandwidth | Stream data rate[3] | Allowable MIMO streams |
Modulation | Approximate range[citation needed] | |||
Indoor | Outdoor | |||||||||||
(GHz) | (MHz) | (Mbit/s) | ||||||||||
1–6 GHz | DSSS/FHSS[4] | 802.11-1997 | Jun 1997 | 2.4 | 22 | 1, 2 | N/A | DSSS, FHSS | 20 m (66 ft) | 100 m (330 ft) | ||
HR-DSSS[4] | 802.11b | Sep 1999 | 2.4 | 22 | 1, 2, 5.5, 11 | N/A | DSSS | 35 m (115 ft) | 140 m (460 ft) | |||
OFDM | 802.11a | Sep 1999 | 5 | 5/10/20 | 6, 9, 12, 18, 24, 36, 48, 54 (for 20 MHz bandwidth, divide by 2 and 4 for 10 and 5 MHz) |
N/A | OFDM | 35 m (115 ft) | 120 m (390 ft) | |||
802.11j | Nov 2004 | 4.9/5.0[D][5][failed verification] | ? | ? | ||||||||
802.11p | Jul 2010 | 5.9 | ? | 1,000 m (3,300 ft)[6] | ||||||||
802.11y | Nov 2008 | 3.7[A] | ? | 5,000 m (16,000 ft)[A] | ||||||||
ERP-OFDM(, etc.) | 802.11g | Jun 2003 | 2.4 | 38 m (125 ft) | 140 m (460 ft) | |||||||
HT-OFDM[7] | 802.11n | Oct 2009 | 2.4/5 | 20 | Up to 288.8[B] | 4 | MIMO-OFDM | 70 m (230 ft) | 250 m (820 ft)[8][failed verification] | |||
40 | Up to 600[B] | |||||||||||
VHT-OFDM[7] | 802.11ac | Dec 2013 | 5 | 20 | Up to 346.8[B] | 8 | MIMO-OFDM | 35 m (115 ft)[9] | ? | |||
40 | Up to 800[B] | |||||||||||
80 | Up to 1733.2[B] | |||||||||||
160 | Up to 3466.8[B] | |||||||||||
HE-OFDM | 802.11ax | September 2019 [10] | 2.4/5/6 | 20 | Up to 1147[F] | 8 | MIMO-OFDM | 30 m (98 ft) | 120 m (390 ft) [G] | |||
40 | Up to 2294[F] | |||||||||||
80 | Up to 4804[F] | |||||||||||
80+80 | Up to 9608[F] | |||||||||||
mmWave | DMG[11] | 802.11ad | Dec 2012 | 60 | 2,160 | Up to 6,757[12] (6.7 Gbit/s) |
N/A | OFDM, single carrier, low-power single carrier | 3.3 m (11 ft)[13] | ? | ||
802.11aj | Apr 2018 | 45/60[C] | 540/1,080[14] | Up to 15,000[15] (15 Gbit/s) |
4[16] | OFDM, single carrier[16] | ? | ? | ||||
EDMG[17] | 802.11ay | Est. May 2020 | 60 | 8000 | Up to 20,000 (20 Gbit/s)[18] | 4 | OFDM, single carrier | 10 m (33 ft) | 100 m (328 ft) | |||
Sub-1 GHz IoT | TVHT[19] | 802.11af | Feb 2014 | 0.054–0.79 | 6–8 | Up to 568.9[20] | 4 | MIMO-OFDM | ? | ? | ||
S1G[19] | 802.11ah | Dec 2016 | 0.7/0.8/0.9 | 1–16 | Up to 8.67 (@2 MHz)[21] | 4 | ? | ? | ||||
2.4 GHz, 5 GHz | WUR | 802.11ba[E] | Est. Sep 2020 | 2.4/5 | 4.06 | 0.0625, 0.25 (62.5 kbit/s, 250 kbit/s) | N/A | OOK (Multi-carrier OOK) | ? | ? | ||
Light (Li-Fi) | IR | 802.11-1997 | Jun 1997 | ? | ? | 1, 2 | N/A | PPM | ? | ? | ||
? | 802.11bb | Est. Jul 2021 | 60000-790000 | ? | ? | N/A | ? | ? | ? | |||
802.11 Standard rollups | ||||||||||||
802.11-2007 | Mar 2007 | 2.4, 5 | Up to 54 | DSSS, OFDM | ||||||||
802.11-2012 | Mar 2012 | 2.4, 5 | Up to 150[B] | DSSS, OFDM | ||||||||
802.11-2016 | Dec 2016 | 2.4, 5, 60 | Up to 866.7 or 6,757[B] | DSSS, OFDM | ||||||||
|
Notes
References
- ↑ Maufer, Thomas (2004). A Field Guide to Wireless LANs: For Administrators and Power Users. Prentice Hall Professional. p. 144. 0131014064. ISBN 9780131014060. https://books.google.com/books?id=GB-87qyhc8sC&pg=PA142. Retrieved 2015-10-27.
- ↑ "Official IEEE 802.11 working group project timelines". January 26, 2017. http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm. Retrieved 2017-02-12.
- ↑ "Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi® Networks". Wi-Fi Alliance. September 2009. http://www.wi-fi.org/register.php?file=wp_Wi-Fi_CERTIFIED_n_Industry.pdf.[|permanent dead link|dead link}}]
- ↑ 4.0 4.1 Banerji, Sourangsu; Chowdhury, Rahul Singha. "On IEEE 802.11: Wireless LAN Technology". arXiv:1307.2661.
- ↑ "The complete family of wireless LAN standards: 802.11 a, b, g, j, n". https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_common_library/dl_news_from_rs/183/n183_lan.pdf.
- ↑ Abdelgader, Abdeldime M.S.; Wu, Lenan (2014). "The Physical Layer of the IEEE 802.11p WAVE Communication Standard: The Specifications and Challenges". World Congress on Engineering and Computer Science. http://www.iaeng.org/publication/WCECS2014/WCECS2014_pp691-698.pdf.
- ↑ 7.0 7.1 Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice
- ↑ Belanger, Phil; Biba, Ken (2007-05-31). "802.11n Delivers Better Range". Wi-Fi Planet. http://www.wi-fiplanet.com/tutorials/article.php/3680781.
- ↑ "IEEE 802.11ac: What Does it Mean for Test?". LitePoint. October 2013. http://litepoint.com/whitepaper/80211ac_Whitepaper.pdf.
- ↑ "Wi-Fi 6 Routers: What You Can Buy Now (and Soon) | Tom's Guide". https://www.tomsguide.com/amp/us/best-wifi-6-routers,review-6115.html.
- ↑ "IEEE Standard for Information Technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput to Support Chinese Millimeter Wave Frequency Bands (60 GHz and 45 GHz)". IEEE Std 802.11aj-2018. April 2018. doi:10.1109/IEEESTD.2018.8345727. https://ieeexplore.ieee.org/document/8345727.
- ↑ "802.11ad - WLAN at 60 GHz: A Technology Introduction". Rohde & Schwarz GmbH. November 21, 2013. p. 14. https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma220/1MA220_2e_WLAN_11ad_WP.pdf.
- ↑ "Connect802 - 802.11ac Discussion". https://www.connect802.com/802-11ac-discussion.
- ↑ "Understanding IEEE 802.11ad Physical Layer and Measurement Challenges". https://www.keysight.com/upload/cmc_upload/All/22May2014Webcast.pdf.
- ↑ "802.11aj Press Release". https://mentor.ieee.org/802.11/dcn/18/11-18-0698-01-0000-802-11aj-press-release.docx.
- ↑ 16.0 16.1 Hong, Wei; He, Shiwen; Wang, Haiming; Yang, Guangqi; Huang, Yongming; Chen, Jixing; Zhou, Jianyi; Zhu, Xiaowei et al. (2018). "An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System". IEICE Transactions on Communications E101.B (2): 262-276. doi:10.1587/transcom.2017ISI0004. https://www.jstage.jst.go.jp/article/transcom/E101.B/2/E101.B_2017ISI0004/_pdf.
- ↑ "IEEE 802.11ay: 1st real standard for Broadband Wireless Access (BWA) via mmWave – Technology Blog". https://techblog.comsoc.org/2018/06/15/ieee-802-11ay-1st-real-standard-for-broadband-wireless-access-bwa-via-mmwave/.
- ↑
Sun, Rob; Xin, Yan; Aboul-Maged, Osama; Calcev, George; Wang, Lei; Au, Edward; Cariou, Laurent; Cordeiro, Carlos et al.. "P802.11 Wireless LANs". IEEE. pp. 2,3. Archived from the original. Error: If you specify
|archiveurl=
, you must also specify|archivedate=
. https://web.archive.org/web/20171206183820/https://mentor.ieee.org/802.11/dcn/15/11-15-1074-00-00ay-11ay-functional-requirements.docx. Retrieved December 6, 2017. - ↑ 19.0 19.1 "802.11 Alternate PHYs A whitepaper by Ayman Mukaddam". https://www.cwnp.com/uploads/802-11alternatephyswhitepaper.pdf.
- ↑ Lee, Wookbong; Kwak, Jin-Sam; Kafle, Padam; Tingleff, Jens; Yucek, Tevfik; Porat, Ron; Erceg, Vinko; Lan, Zhou et al. (2012-07-10). "TGaf PHY proposal". IEEE P802.11. https://mentor.ieee.org/802.11/dcn/12/11-12-0809-05-00af-tgaf-phy-proposal.docx. Retrieved 2013-12-29.
- ↑ Sun, Weiping; Choi, Munhwan; Choi, Sunghyun (July 2013). "IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1 GHz". Journal of ICT Standardization 1 (1): 83–108. doi:10.13052/jicts2245-800X.115. http://riverpublishers.com/journal/journal_articles/RP_Journal_2245-800X_115.pdf.
Further reading
- IEEE 802.11 Working Group (1997-11-18). IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. doi:10.1109/IEEESTD.1997.85951. ISBN 1-55937-935-9.
- IEEE 802.11 Working Group (1999-07-15). IEEE Standard for Information Technology- Telecommunications and Information Exchange Between Systems- Local and Metropolitan Area Networks- Specific Requirements- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. doi:10.1109/IEEESTD.2003.95617. ISBN 0-7381-1857-5.
Original source: https://en.wikipedia.org/wiki/IEEE 802.11 (legacy mode).
Read more |