IEEE 802.11ac

From HandWiki
Short description: Wireless networking standard in the 802.11 family

IEEE 802.11ac is a wireless networking standard in the 802.11 set of protocols (which is part of the Wi-Fi networking family), providing high-throughput wireless local area networks (WLANs) on the 5 GHz band. The standard was developed in the IEEE Standards Association from 2008 (PAR approved 2008-09-26) through 2013 and published in December 2013 (ANSI approved 2013-12-11).[1][2] The standard has been retroactively labelled as Wi-Fi 5 by Wi-Fi Alliance.[3][4]

The specification has multi-station throughput of at least 1 gigabit per second (1 Gbit/s) and single-link throughput of at least 500 megabits per second (0.5 Gbit/s).[5] This is accomplished by extending the air-interface concepts embraced by 802.11n: wider RF bandwidth (up to 160 MHz), more MIMO spatial streams (up to eight), downlink multi-user MIMO (up to four clients), and high-density modulation (up to 256-QAM).[6][7]

The Wi-Fi Alliance separated the introduction of ac wireless products into two phases ("wave"), named "Wave 1" and "Wave 2".[8][9] From mid-2013, the alliance started certifying Wave 1 802.11ac products shipped by manufacturers, based on the IEEE 802.11ac Draft 3.0 (the IEEE standard was not finalized until later that year).[10] Subsequently in year 2016, Wi-Fi Alliance introduced the Wave 2 certification, which includes additional features like MU-MIMO, 160 MHz channel width support, support for more 5 GHz channels, and four spatial streams (with four antennas; compared to three in Wave 1 and 802.11n, and eight in IEEE's 802.11ax specification).[11] It meant Wave 2 products would have higher bandwidth and capacity than Wave 1 products.[12]

New technologies

New technologies introduced with 802.11ac include the following:[7][13]

  • Extended channel binding
    • Optional 160 MHz and mandatory 80 MHz channel bandwidth for stations; cf. 40 MHz maximum in 802.11n.
  • More MIMO spatial streams
    • Support for up to eight spatial streams (vs. four in 802.11n)
  • Downlink multi-user MIMO (MU-MIMO, allows up to four simultaneous downlink MU-MIMO clients)
    • Multiple STAs, each with one or more antennas, transmit or receive independent data streams simultaneously.
    • Downlink MU-MIMO (one transmitting device, multiple receiving devices) included as an optional mode.
  • Modulation
    • 256-QAM, rate 3/4 and 5/6, added as optional modes (vs. 64-QAM, rate 5/6 maximum in 802.11n).
    • Some vendors offer a non-standard 1024-QAM mode, providing 25% higher data rate compared to 256-QAM
  • Other elements/features
    • Beamforming with standardized sounding and feedback for compatibility between vendors (non-standard in 802.11n made it hard for beamforming to work effectively between different vendor products)
    • MAC modifications (mostly to support above changes)
    • Coexistence mechanisms for 20, 40, 80, and 160 MHz channels, 11ac and 11a/n devices
    • Adds four new fields to the PPDU header identifying the frame as a very high throughput (VHT) frame as opposed to 802.11n's high throughput (HT) or earlier. The first three fields in the header are readable by legacy devices to allow coexistence

Features

Mandatory

  • Borrowed from the 802.11a/802.11g specifications:
  • Newly introduced by the 802.11ac specification:
    • 80 MHz channel bandwidths

Optional

  • Borrowed from the 802.11n specification:
    • Two to four spatial streams
    • Low-density parity-check code (LDPC)
    • Space–time block coding (STBC)
    • Transmit beamforming (TxBF)
    • 400 ns short guard interval (SGI)
  • Newly introduced by the 802.11ac specification:
    • five to eight spatial streams
    • 160 MHz channel bandwidths (contiguous 80+80)
    • 80+80 MHz channel bonding (discontiguous 80+80)
    • MCS 8/9 (256-QAM)

New scenarios and configurations

The single-link and multi-station enhancements supported by 802.11ac enable several new WLAN usage scenarios, such as simultaneous streaming of HD video to multiple clients throughout the home, rapid synchronization and backup of large data files, wireless display, large campus/auditorium deployments, and manufacturing floor automation.[14]

With the inclusion of USB 3.0 interface, 802.11ac access points and routers can use locally attached storage to provide various services that fully utilize their WLAN capacities, such as video streaming, FTP servers, and personal cloud services.[15] With storage locally attached through USB 2.0, filling the bandwidth made available by 802.11ac was not easily accomplished.

Example configurations

All rates assume 256-QAM, rate 5/6:

Scenario Typical client
form factor
PHY link rate Aggregate
capacity
(speed)
One-antenna AP, one-antenna STA, 80 MHz Handheld 433 Mbit/s 433 Mbit/s
Two-antenna AP, two-antenna STA, 80 MHz Tablet, laptop 867 Mbit/s 867 Mbit/s
One-antenna AP, one-antenna STA, 160 MHz Handheld 867 Mbit/s 867 Mbit/s
Three-antenna AP, three-antenna STA, 80 MHz Laptop, PC 1.27 Gbit/s 1.27 Gbit/s
Two-antenna AP, two-antenna STA, 160 MHz Tablet, laptop 1.69 Gbit/s 1.69 Gbit/s
Four-antenna AP, four one-antenna STAs, 160 MHz
(MU-MIMO)
Handheld 867 Mbit/s to each STA 3.39 Gbit/s
Eight-antenna AP, 160 MHz (MU-MIMO)
  • one four-antenna STA
  • one two-antenna STA
  • two one-antenna STAs
Digital TV, Set-top Box,
Tablet, Laptop, PC, Handheld
  • 3.39 Gbit/s to four-antenna STA
  • 1.69 Gbit/s to two-antenna STA
  • 867 Mbit/s to each one-antenna STA
6.77 Gbit/s
Eight-antenna AP, four 2-antenna STAs, 160 MHz
(MU-MIMO)
Digital TV, tablet, laptop, PC 1.69 Gbit/s to each STA 6.77 Gbit/s

Wave 1 vs. Wave 2

Wave 2, referring to products introduced in 2016, offers a higher throughput than legacy Wave 1 products, those introduced starting in 2013. The maximum physical layer theoretical rate for Wave 1 is 1.3 Gbit/s, while Wave 2 can reach 2.34 Gbit/s. Wave 2 can therefore achieve 1 Gbit/s even if the real world throughput turns out to be only 50% of the theoretical rate. Wave 2 also supports a higher number of connected devices.[12]

Data rates and speed

Modulation and coding schemes
MCS
index[lower-alpha 1]
Spatial
Streams
Modulation
type
Coding
rate
Data rate (in Mbit/s)[16][lower-alpha 2]
20 MHz channels 40 MHz channels 80 MHz channels 160 MHz channels
800 ns GI 400 ns GI 800 ns GI 400 ns GI 800 ns GI 400 ns GI 800 ns GI 400 ns GI
0 1 BPSK 1/2 6.5 7.2 13.5 15 29.3 32.5 58.5 65
1 1 QPSK 1/2 13 14.4 27 30 58.5 65 117 130
2 1 QPSK 3/4 19.5 21.7 40.5 45 87.8 97.5 175.5 195
3 1 16-QAM 1/2 26 28.9 54 60 117 130 234 260
4 1 16-QAM 3/4 39 43.3 81 90 175.5 195 351 390
5 1 64-QAM 2/3 52 57.8 108 120 234 260 468 520
6 1 64-QAM 3/4 58.5 65 121.5 135 263.3 292.5 526.5 585
7 1 64-QAM 5/6 65 72.2 135 150 292.5 325 585 650
8 1 256-QAM 3/4 78 86.7 162 180 351 390 702 780
9 1 256-QAM 5/6 N/A N/A 180 200 390 433.3 780 866.7
0 2 BPSK 1/2 13 14.4 27 30 58.5 65 117 130
1 2 QPSK 1/2 26 28.9 54 60 117 130 234 260
2 2 QPSK 3/4 39 43.3 81 90 175.5 195 351 390
3 2 16-QAM 1/2 52 57.8 108 120 234 260 468 520
4 2 16-QAM 3/4 78 86.7 162 180 351 390 702 780
5 2 64-QAM 2/3 104 115.6 216 240 468 520 936 1040
6 2 64-QAM 3/4 117 130.3 243 270 526.5 585 1053 1170
7 2 64-QAM 5/6 130 144.4 270 300 585 650 1170 1300
8 2 256-QAM 3/4 156 173.3 324 360 702 780 1404 1560
9 2 256-QAM 5/6 N/A N/A 360 400 780 866.7 1560 1733.3
0 3 BPSK 1/2 19.5 21.7 40.5 45 87.8 97.5 175.5 195
1 3 QPSK 1/2 39 43.3 81 90 175.5 195 351 390
2 3 QPSK 3/4 58.5 65 121.5 135 263.3 292.5 526.5 585
3 3 16-QAM 1/2 78 86.7 162 180 351 390 702 780
4 3 16-QAM 3/4 117 130 243 270 526.5 585 1053 1170
5 3 64-QAM 2/3 156 173.3 324 360 702 780 1404 1560
6 3 64-QAM 3/4 175.5 195 364.5 405 N/A N/A 1579.5 1755
7 3 64-QAM 5/6 195 216.7 405 450 877.5 975 1755 1950
8 3 256-QAM 3/4 234 260 486 540 1053 1170 2106 2340
9 3 256-QAM 5/6 260 288.9 540 600 1170 1300 2340 2600
0 4 BPSK 1/2 26 28.8 54 60 117.2 130 234 260
1 4 QPSK 1/2 52 57.6 108 120 234 260 468 520
2 4 QPSK 3/4 78 86.8 162 180 351.2 390 702 780
3 4 16-QAM 1/2 104 115.6 216 240 468 520 936 1040
4 4 16-QAM 3/4 156 173.2 324 360 702 780 1404 1560
5 4 64-QAM 2/3 208 231.2 432 480 936 1040 1872 2080
6 4 64-QAM 3/4 234 260 486 540 1053.2 1170 2106 2340
7 4 64-QAM 5/6 260 288.8 540 600 1170 1300 2340 2600
8 4 256-QAM 3/4 312 346.8 648 720 1404 1560 2808 3120
9 4 256-QAM 5/6 N/A N/A 720 800 1560 1733.3 3120 3466.7

Several companies are currently offering 802.11ac chipsets with higher modulation rates: MCS-10 and MCS-11 (1024-QAM), supported by Quantenna and Broadcom. Although technically not part of 802.11ac, these new MCS indices are expected to become official in the 802.11ax standard (~2019), the successor to 802.11ac.

160 MHz channels, and thus the throughput might be unusable in some countries/regions due to regulatory issues that allocated some frequencies for other purposes.

Advertised Speeds

802.11ac-class device wireless speeds are often advertised as AC followed by a number, that number being the highest link rates in Mbit/s of all the simultaneously-usable radios in the device added up. For example, an AC1900 access point might have 600 Mbit/s capability on its 2.4 GHz radio and 1300 Mbit/s capability on its 5 GHz radio. No single client device could connect and achieve 1900 Mbit/s of throughput, but separate devices each connecting to the 2.4 GHz and 5 GHz radios could achieve combined throughput approaching 1900 Mbit/s. Different possible stream configurations can add up to the same AC number.

Type 2.4 GHz band[lower-alpha 3]
Mbit/s
2.4 GHz band config
[all 40 MHz]
5 GHz band
Mbit/s
5 GHz band config
[all 80 MHz]
AC450[17] - - 433 1 stream @ MCS 9
AC600 150 1 stream @ MCS 7 433 1 stream @ MCS 9
AC750 300 2 streams @ MCS 7 433 1 stream @ MCS 9
AC1000 300 2 streams @ MCS 7 650 2 streams @ MCS 7
AC1200 300 2 streams @ MCS 7 867 2 streams @ MCS 9
AC1300 400 2 streams @ 256-QAM 867 2 streams @ MCS 9
AC1300[18] - - 1,300 3 streams @ MCS 9
AC1350[19] 450 3 streams @ MCS 7 867 2 streams @ MCS 9
AC1450 450 3 streams @ MCS 7 975 3 streams @ MCS 7
AC1600 300 2 streams @ MCS 7 1,300 3 streams @ MCS 9
AC1700 800 4 streams @ 256-QAM 867 2 streams @ MCS 9
AC1750 450 3 streams @ MCS 7 1,300 3 streams @ MCS 9
AC1900 600[lower-alpha 4] 3 streams @ 256-QAM 1,300 3 streams @ MCS 9
AC2100 800 4 streams @ 256-QAM 1,300 3 streams @ MCS 9
AC2200 450 3 streams @ MCS 7 1,733 4 streams @ MCS 9
AC2300 600 4 streams @ MCS 7 1,625 3 streams @ 1024-QAM
AC2400 600 4 streams @ MCS 7 1,733 4 streams @ MCS 9
AC2600 800[lower-alpha 4] 4 streams @ 256-QAM 1,733 4 streams @ MCS 9
AC2900 750[lower-alpha 5] 3 streams @ 1024-QAM 2,167 4 streams @ 1024-QAM
AC3000 450 3 streams @ MCS 7 1,300 + 1,300 3 streams @ MCS 9 x 2
AC3150 1000[lower-alpha 5] 4 streams @ 1024-QAM 2,167 4 streams @ 1024-QAM
AC3200 600[lower-alpha 4] 3 streams @ 256-QAM 1,300 + 1,300[lower-alpha 6] 3 streams @ MCS 9 x 2
AC5000 600 4 streams @ MCS 7 2,167 + 2,167 4 streams @ 1024-QAM x 2
AC5300[22] 1000[lower-alpha 5] 4 streams @ 1024-QAM 2,167 + 2,167 4 streams @ 1024-QAM x 2

Products

Commercial routers and access points

Quantenna released the first 802.11ac chipset for retail Wi-Fi routers and consumer electronics on November 15, 2011.[23] Redpine Signals released the first low power 802.11ac technology for smartphone application processors on December 14, 2011.[24] On January 5, 2012, Broadcom announced its first 802.11ac Wi-Fi chips and partners[25] and on April 27, 2012, Netgear announced the first Broadcom-enabled router.[26] On May 14, 2012, Buffalo Technology released the world’s first 802.11ac products to market, releasing a wireless router and client bridge adapter.[27] On December 6, 2012, Huawei announced commercial availability of the industry's first enterprise-level 802.11ac Access Point.[28]

Motorola Solutions is selling 802.11ac access points including the AP 8232.[29] In April 2014, Hewlett-Packard started selling the HP 560 access point in the controller-based WLAN enterprise market segment.[30]

Commercial laptops

On June 7, 2012, it was reported that Asus had unveiled its ROG G75VX gaming notebook, which would be the first consumer-oriented notebook to be fully compliant with 802.11ac[31] (albeit in its "draft 2.0" version).

Apple began implementing 802.11ac starting with the MacBook Air in June 2013,[32][33] followed by the MacBook Pro and Mac Pro later that year.[34][35]

(As of December 2013), Hewlett-Packard incorporates 802.11ac compliance in laptop computers.[36]

Commercial handsets (partial list)

Commercial tablets

Chipsets

See also

Notes

  1. MCS 9 is not applicable to all channel width/spatial stream combinations.
  2. A second stream doubles the theoretical data rate, a third one triples it, etc.
  3. 802.11ac only specifies operation in the 5 GHz band. Operation in the 2.4 GHz band is specified by 802.11n.
  4. 4.0 4.1 4.2 With 802.11n, 600 Mbit/s in the 2.4 GHz band can be achieved by using four spatial streams at 150 Mbit/s each. (As of December 2014), commercially available devices that achieve 600 Mbit/s in the 2.4 GHz band use 3 spatial streams at 200 Mbit/s each.[20][21] This requires the use of 256-QAM modulation, which is not compliant with 802.11n and can be considered a proprietary extension.[21]
  5. 5.0 5.1 5.2 With proprietary extension to 802.11n, using 40MHz channel in 2.4GHz, 400ns guard interval, 1024-QAM, and 4 spatial streams.
  6. (As of December 2014), commercially available AC3200 devices use two separate radios with 1,300 Mbit/s each to achieve 2,600 Mbit/s total in the 5 GHz band.

References

  1. "Official IEEE 802.11 Working Group Project Timelines". 2012-11-03. http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm. 
  2. Kelly, Vivian (2014-01-07). "New IEEE 802.11ac™ Specification Driven by Evolving Market Need for Higher, Multi-User Throughput in Wireless LANs". IEEE. http://standards.ieee.org/news/2014/ieee_802_11ac_ballot.html. Retrieved 2014-01-11. 
  3. Wi-Fi Alliance® introduces Wi-Fi 6
  4. Shankland, Stephen (2018-10-03). "Here come Wi-Fi 4, 5 and 6 in plan to simplify 802.11 networking names - The Wi-Fi Alliance wants to make wireless networks easier to understand and recognize". https://www.cnet.com/news/wi-fi-alliance-simplifying-802-11-wireless-network-tech-names/. 
  5. Van Nee, Richard (2011). "Breaking the Gigabit-per-second barrier with 802.11ac". IEEE Wireless Communications Magazine. http://www.jorianvannee.nl/wifi. 
  6. Kassner, Michael (2013-06-18). "Cheat sheet: What you need to know about 802.11ac". http://www.techrepublic.com/blog/networking/cheat-sheet-what-you-need-to-know-about-80211ac/6689. Retrieved 2013-06-20. 
  7. 7.0 7.1 "802.11ac: A Survival Guide". Chimera.labs.oreilly.com. http://chimera.labs.oreilly.com/books/1234000001739/ch04.html. 
  8. 802.11AC WAVE 2 A XIRRUS WHITE PAPER
  9. 802.11ac Wi-Fi Part 2: Wave 1 and Wave 2 Products
  10. 802.11ac: The Fifth Generation of Wi-Fi Technical White Paper, March 2014, Cisco
  11. Wi-Fi Alliance launches 802.11ac Wave 2 certification
  12. 12.0 12.1 "6 things you need to know about 802.11ac Wave 2". 2016-07-13. https://www.techrepublic.com/article/6-things-you-need-to-know-about-802-11ac-wave-2/. Retrieved 2018-07-26. 
  13. Bejarano, Oscar; Knightly, Edward; Park, Minyoung (2013-10-08). "IEEE 802.11ac: from channelization to multi-user MIMO". IEEE Communications Magazine 51 (10): 84–90. doi:10.1109/MCOM.2013.6619570. 
  14. de Vegt, Rolf (2008-11-10). "802.11ac Usage Models Document". https://mentor.ieee.org/802.11/dcn/09/11-09-0161-02-00ac-802-11ac-usage-model-document.ppt. 
  15. "ASUS RT-AC56U & USB-AC56 802.11AC Review". Hardwarecanucks.com. http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/63773-asus-rt-ac56u-usb-ac56-802-11ac-review.html. Retrieved 2014-04-24. 
  16. "IEEE Std 802.11ac™-2013 - 22.5 Parameters for VHT-MCSs". IEEE. 2013-12-11. pp. 323–339. http://standards.ieee.org/getieee802/download/802.11ac-2013.pdf. Retrieved 2015-04-13. 
  17. "AC580 USB Wireless Adapter Roundup". 2014-11-04. https://www.smallnetbuilder.com/wireless/wireless-reviews/32545-ac580-usb-wireless-adapter-roundup. Retrieved 2018-01-02. 
  18. "Linksys WUMC710 Wireless-AC Universal Media Connector Reviewed". 2014-01-28. http://www.smallnetbuilder.com/wireless/wireless-reviews/32327-linksys-wumc710-wireless-ac-universal-media-connector-reviewed. Retrieved 2016-08-08. 
  19. "Archer C59". 2017-03-19. http://www.tp-link.com/us/products/details/cat-5506_Archer-C59.html#specifications. Retrieved 2017-03-19. 
  20. Ganesh, T S (2014-09-02). "Netgear R7500 Nighthawk X4 Integrates Quantenna 4x4 ac Radio and Qualcomm IPQ8064 SoC". anandtech.com. http://www.anandtech.com/show/8464/netgear-r7500-nighthawk-x4-integrates-quantenna-4x4-ac-radio-and-qualcomm-ipq8064-soc. Retrieved 2014-09-08. 
  21. 21.0 21.1 Higgins, Tim (2013-10-08). "AC1900: Innovation or 3D Wi-Fi?". smallnetbuilder.com. http://www.smallnetbuilder.com/wireless/wireless-features/32238-ac1900-innovation-or-3d-wi-fi. Retrieved 2014-09-08. 
  22. Ngo, Dong. "Netgear R8500 Nighthawk X8 AC5300 Smart WiFi Router review". http://www.cnet.com/products/netgear-r8500-nighthawk-x8-ac5300-smart-wifi-router/#!. Retrieved 2016-08-08. 
  23. "Quantenna Launches World's First 802.11ac Gigabit-Wireless Solution for Retail Wi-Fi Routers and Consumer Electronics" (Press release). Quantenna. 2011-11-15.
  24. "Redpine Signals Releases First Ultra Low Power 802.11ac Technology for Smartphone Application Processors" (Press release). Redpine Signals. 2011-12-14. Retrieved 2013-03-15.
  25. "Broadcom Launches First Gigabit Speed 802.11ac Chips - Opens 2012 CES with 5th Generation (5G) Wi-Fi Breakthrough" (Press release). Broadcom. 2012-01-05. Retrieved 2013-03-15.
  26. "Netgear's R6300 router is first to use Broadcom 802.11ac chipset, will ship next month for $200". Engadget. https://www.engadget.com/2012/04/26/netgear-r6300-802-11ac-router. Retrieved 10 September 2014. 
  27. "Buffalo's 802.11ac Wireless Solutions Available Now" (Press release). Austin, Texas: Buffalo Technology (via PRNewswire). May 14, 2012. Retrieved 2013-03-15.
  28. "Huawei Announces Commercial Availability of Industry's First Enterprise-level 802.11ac Access Point". Huawei. 6 December 2012. http://enterprise.huawei.com/ilink/enenterprise/news-event/news/news-list/HW_198472?KeyTemps=. 
  29. "Motorola Modular Access Points Performance Review" (in en). http://broadbandlanding.com/research/mmap/. 
  30. "HP Launches the HP 560 802.11ac Access Point". HP. 2014-03-31. http://h17007.www1.hp.com/us/en/networking/products/wireless/HP_560_802_11ac_Dual_Radio_Access_Point_Series/index.aspx#tab=TAB1. 
  31. "Asus gaming notebook first to feature full 802.11ac". Electronista. 2012-06-07. http://www.electronista.com/articles/12/06/07/fifth.generation.wi.fi.standard.finally.reaching.consumers. Retrieved 2013-03-15. 
  32. "Apple unveils new MacBook Air lineup with all-day battery life, 802.11ac Wi-Fi". AppleInsider. 2013-06-11. http://appleinsider.com/articles/13/06/10/apple-unveils-new-macbook-air-lineup-with-all-day-battery-life-80211ac-wi-fi. Retrieved 2013-06-11. 
  33. "Apple - Macbook Air". https://www.apple.com/macbook-air. Retrieved 10 September 2014. 
  34. "MacBook Pro with Retina display - Technical Specifications". Apple. https://www.apple.com/macbook-pro/specs-retina/. Retrieved 10 January 2014. 
  35. "Mac Pro - Technical Specifications". Apple. https://www.apple.com/mac-pro/specs/. Retrieved 10 January 2014. 
  36. "HP ENVY TouchSmart 17-j043cl Notebook PC Product Specifications HP ENVY TouchSmart 17-j043cl Notebook PC". http://h10025.www1.hp.com/ewfrf/wc/document?docname=c03904324&tmp_task=prodinfoCategory&cc=us&dlc=en&lc=en&product=5447282#N364. Retrieved 2014-04-17. 
  37. "HTC One Teardown". http://www.ifixit.com/Teardown/HTC+One+Teardown/13494/2. Retrieved 2016-08-08. 
  38. "HTC One M8 | HTC United States | HTC United States". http://www.htc.com/us/smartphones/htc-one/#specs. Retrieved 2016-08-08. 
  39. "Inside the Samsung Galaxy S4 - Recent Teardowns". 27 April 2013. http://www.chipworks.com/blog/recentteardowns/2013/04/25/inside-the-samsung-galaxy-s4/. 
  40. "Cellular, WiFi, Speaker & Noise Rejection - Samsung Galaxy Note 3 Review". http://www.anandtech.com/show/7376/samsung-galaxy-note-3-review/7. Retrieved 2016-08-08. 
  41. "LG Nexus 5 - Full phone specifications". http://www.gsmarena.com/lg_nexus_5-5705.php. Retrieved 2016-08-08. 
  42. "Nexus 5 Teardown". https://www.ifixit.com/Teardown/Nexus+5+Teardown/19016#s53729. Retrieved 2016-08-08. 
  43. "Nokia Lumia 1520 Specifications - Microsoft - USA". 2014-07-23. http://www.microsoft.com/en-us/mobile/phone/lumia1520/specifications/. Retrieved 2016-08-08. 
  44. "Nokia Lumia Icon". Nokia. http://www.microsoft.com/en-us/mobile/phone/lumia-icon/specifications/. Retrieved 2014-11-10. 
  45. "HTC One (M8) Teardown". https://www.ifixit.com/Teardown/HTC+One+(M8)+Teardown/23615. Retrieved 2016-08-08. 
  46. "Samsung Galaxy S5 Hits Stores, Chock Full of Broadcom Tech - Broadcom Connected". 22 April 2014. http://blog.broadcom.com/wireless-technology/samsung-galaxy-s5-hits-stores-chock-full-of-broadcom-tech/. 
  47. "LG Electronics G2 Powered by ANADIGICS 802.11ac WiFi FEIC" (Press release). ANADIGICS. 2013-08-15. Archived from the original on 2014-03-04.
  48. "First Look: LG G3 Teardown – uBreakiFix Blog". 2014-05-30. http://www.ubreakifix.com/blog/lg-g3-teardown. Retrieved 2016-08-08. 
  49. "Amazon Fire Phone - 13MP Camera, 32GB - Shop Now". https://www.amazon.com/Fire_Phone_13MP-Camera_32GB/dp/B00EOE0WKQ. Retrieved 2016-08-08. 
  50. "Amazon Fire Phone Teardown". https://www.ifixit.com/Teardown/Amazon+Fire+Phone+Teardown/27458#s67320. Retrieved 2016-08-08. 
  51. "Samsung Note 4 & Alpha Teardown". 2014-09-10. http://www.techinsights.com/teardown.com/samsung-note-4-galaxy-alpha/. Retrieved 2016-08-08. 
  52. "Exclusive Video Teardown: Apple iPhone 6 | Electronics360". 2014-09-23. http://electronics360.globalspec.com/article/4578/exclusive-video-teardown-apple-iphone-6. Retrieved 2016-08-08. 
  53. "Nexus 6 Teardown". https://www.ifixit.com/Teardown/Nexus+6+Teardown/32877. Retrieved 2016-08-08. 
  54. "WiFi Performance, GNSS, Misc. - The Samsung Galaxy Note 4 Review". http://www.anandtech.com/show/8613/the-samsung-galaxy-note-4-review/9. Retrieved 2016-08-08. 
  55. "Video Performance, WiFi Performance, and GNSS Performance - The Samsung Galaxy Note5 and Galaxy S6 edge+ Review". http://www.anandtech.com/show/9558/the-samsung-galaxy-note5-and-galaxy-s6-edge-review/8. Retrieved 2016-08-08. 

External links