Krein's condition
In mathematical analysis, Krein's condition provides a necessary and sufficient condition for exponential sums
- [math]\displaystyle{ \left\{ \sum_{k=1}^n a_k \exp(i \lambda_k x), \quad a_k \in \mathbb{C}, \, \lambda_k \geq 0 \right\}, }[/math]
to be dense in a weighted L2 space on the real line. It was discovered by Mark Krein in the 1940s.[1] A corollary, also called Krein's condition, provides a sufficient condition for the indeterminacy of the moment problem.[2][3]
Statement
Let μ be an absolutely continuous measure on the real line, dμ(x) = f(x) dx. The exponential sums
- [math]\displaystyle{ \sum_{k=1}^n a_k \exp(i \lambda_k x), \quad a_k \in \mathbb{C}, \, \lambda_k \geq 0 }[/math]
are dense in L2(μ) if and only if
- [math]\displaystyle{ \int_{-\infty}^\infty \frac{- \ln f(x)}{1 + x^2} \, dx = \infty. }[/math]
Indeterminacy of the moment problem
Let μ be as above; assume that all the moments
- [math]\displaystyle{ m_n = \int_{-\infty}^\infty x^n d\mu(x), \quad n = 0,1,2,\ldots }[/math]
of μ are finite. If
- [math]\displaystyle{ \int_{-\infty}^\infty \frac{- \ln f(x)}{1 + x^2} \, dx \lt \infty }[/math]
holds, then the Hamburger moment problem for μ is indeterminate; that is, there exists another measure ν ≠ μ on R such that
- [math]\displaystyle{ m_n = \int_{-\infty}^\infty x^n \, d\nu(x), \quad n = 0,1,2,\ldots }[/math]
This can be derived from the "only if" part of Krein's theorem above.[4]
Example
Let
- [math]\displaystyle{ f(x) = \frac{1}{\sqrt{\pi}} \exp \left\{ - \ln^2 x \right\}; }[/math]
the measure dμ(x) = f(x) dx is called the Stieltjes–Wigert measure. Since
- [math]\displaystyle{ \int_{-\infty}^\infty \frac{- \ln f(x)}{1+x^2} dx = \int_{-\infty}^\infty \frac{\ln^2 x + \ln \sqrt{\pi}}{1 + x^2} \, dx \lt \infty, }[/math]
the Hamburger moment problem for μ is indeterminate.
References
- ↑ Krein, M.G. (1945). "On an extrapolation problem due to Kolmogorov". Doklady Akademii Nauk SSSR 46: 306–309.
- ↑ Hazewinkel, Michiel, ed. (2001), "Krein_condition", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=Krein_condition
- ↑ Berg, Ch. (1995). "Indeterminate moment problems and the theory of entire functions". J. Comput. Appl. Math. 65 (1–3): 1–3, 27–55. doi:10.1016/0377-0427(95)00099-2.
- ↑ Akhiezer, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis. Oliver & Boyd.
Original source: https://en.wikipedia.org/wiki/Krein's condition.
Read more |