Malcev-admissible algebra
From HandWiki
In algebra, a Malcev-admissible algebra, introduced by Myung (1983), is a (possibly non-associative) algebra that becomes a Malcev algebra under the bracket [a, b] = ab − ba. Examples include alternative algebras, Malcev algebras and Lie-admissible algebras.
See also
- Jordan-admissible algebra
References
- Albert, A. Adrian (1948), "Power-associative rings", Transactions of the American Mathematical Society 64: 552–593, doi:10.2307/1990399
- Hazewinkel, Michiel, ed. (2001), "Lie-admissible_algebra", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=Lie-admissible_algebra
- Myung, Hyo Chul (1980), "Flexible Malʹcev-admissible algebras", Hadronic Journal 4 (6): 2033–2136
- Myung, Hyo Chul (1986), Malcev-admissible algebras, Progress in Mathematics, 64, Boston, MA: Birkhäuser Boston, doi:10.1007/978-1-4899-6661-2, ISBN 0-8176-3345-6, https://books.google.com/books?id=PBvvAAAAMAAJ
Original source: https://en.wikipedia.org/wiki/Malcev-admissible algebra.
Read more |