Medicine:Liquid biopsy

From HandWiki
Short description: Sampling and analysis of non-solid biological tissues
Liquid biopsy
Medical diagnostics
SynonymsFluid biopsy
Purposeanalysis of non-solid biological tissue

A liquid biopsy, also known as fluid biopsy or fluid phase biopsy, is the sampling and analysis of non-solid biological tissue, primarily blood.[1][2] Like traditional biopsy, this type of technique is mainly used as a diagnostic and monitoring tool for diseases such as cancer, with the added benefit of being largely non-invasive. Liquid biopsies may also be used to validate the efficiency of a cancer treatment drug by taking multiple samples in the span of a few weeks. The technology may also prove beneficial for patients after treatment to monitor relapse.[3]

The clinical implementation of liquid biopsies is not yet widespread but is becoming standard of care in some areas.[4]

Liquid biopsy refers to the molecular analysis in biological fluids of nucleic acids, subcellular structures, especially exosomes, and, in the context of cancer, circulating tumor cells.[5]

Types

There are several types of liquid biopsy methods; method selection depends on the condition that is being studied.

Disease Tissue sampled Sampling procedure Invasiveness Substance isolated Isolation and detection method Analysis Refs
Cancer (various) Blood Phlebotomy Minimally invasive Circulating tumor cells (CTCs) Various (e.g. CellSearch, RosetteStep, Dynabeads) Flow cytometry, nucleic acid extraction, immunocytochemistry, functional assays [6][7][8]
Cancer (various) Blood Phlebotomy Minimally invasive Circulating tumor DNA (ctDNA) DNA extraction Next-generation sequencing [9][10][11]
Urothelial carcinoma Urine Urine collection Non-invasive Urinary tumor DNA (utDNA) DNA extraction Next-generation sequencing [12][13]
Non-urological cancers Urine Urine collection Non-invasive Urine proteins, metabolites HPLC-MS Proteomics, metabolomics [14][15]
Heart attack Blood Phlebotomy Minimally invasive Circulating endothelial cells (CECs) Various (e.g. CellSearch, HD-CEC) Flow cytometry [16]
Neurological diseases Cerebrospinal fluid Lumbar puncture Invasive CSF proteins, nucleic acids Various ELISA, multiplex assay, next-generation sequencing [17][18]
Prenatal diagnosis Blood (maternal) Phlebotomy Minimally invasive Cell-free fetal DNA (cffDNA) DNA extraction Karyotyping, fluorescent in situ hybridization [19]
Prenatal diagnosis Blood (maternal) Phlebotomy Minimally invasive Fetal cells in maternal blood (FCMB) Flow cytometry Karyotyping, fluorescent in situ hybridization [20]
Prenatal diagnosis Blood (umbilical cord) Cordocentesis Invasive Umbilical blood cells and molecules Various Karyotyping, blood typing, blood tests, Kleihauer–Betke test, flow cytometry [21]
Prenatal diagnosis Amniotic fluid Amniocentesis Invasive Amniotic fluid cells and molecules Various Karyotyping, blood typing, L/S ratio, S/A ratio [22]

A wide variety of biomarkers may be studied to detect or monitor other diseases. For example, isolation of protoporphyrin IX from blood samples can be used as a diagnostic tool for atherosclerosis.[23] Cancer biomarkers in the blood include PSA (prostate cancer), CA19-9 (pancreatic cancer) and CA-125 (ovarian cancer).

Mechanism

Circulating tumor DNA (ctDNA) refers to DNA released by cancerous cells into the blood stream.[24][25] Cancer mutations in ctDNA mirror those found in traditional tumor biopsies, which allows them to be used as molecular biomarkers to track the disease.[26][27] These tests can have sensitive limits of detection, allowing monitoring of minimal residual disease after treatment. Scientists can purify and analyze ctDNA using next-generation sequencing (NGS) or PCR-based methods such as digital PCR.[28] NGS-based methods provide a comprehensive view of a cancer’s genetic makeup and is especially useful in diagnosis while digital PCR offers a more targeted approach especially well-suited for detecting minimal residual disease and for monitoring treatment response and disease progression.[29][30] Recent progress in epigenetics has expanded the use of liquid biopsy for the detection of early-stage cancers, including by approaches such as Cancer Likelihood in Plasma (CLiP) .[31]

Liquid biopsies can detect changes in tumor burden months or years before conventional imaging tests can, making them suitable for early tumor detection, monitoring, and detection of resistance mutations.[32][33][34] The increase in the adoption of NGS in various research fields, advancement in NGS, and increase in the adoption of personalized medicine are expected to drive growth in the global liquid biopsy market.[35]

Clinical application

In cancer, liquid biopsy can be used for either multi-cancer screening tests,[36] when solid tumor biopsies are not possible, to compare different treatments as part of clinical trials, to inform decisions for doctors/patients on which precision medicine treatment to select, and for minimal residual disease detection (disease monitoring). Liquid biopsy of circulating tumor DNA for EGFR-mutated lung cancer is approved by the FDA.[37]

The CellSearch method for enumeration of circulating tumor cells in metastatic breast, metastatic colon, and metastatic prostate cancer has been validated and approved by the FDA as a useful prognostic method.[38]

See also

References

  1. Alix-Panabières, Catherine; Pantel, Klaus (January 2013). "Circulating tumor cells: liquid biopsy of cancer". Clinical Chemistry 59 (1): 110–118. doi:10.1373/clinchem.2012.194258. ISSN 1530-8561. PMID 23014601. 
  2. Crowley, Emily; Di Nicolantonio, Federica; Loupakis, Fotios; Bardelli, Alberto (9 July 2013). "Liquid biopsy: monitoring cancer-genetics in the blood". Nature Reviews Clinical Oncology 10 (8): 472–484. doi:10.1038/nrclinonc.2013.110. PMID 23836314. 
  3. "Understanding cancer's unruly origins helps early diagnosis". The Economist. September 14, 2017. https://www.economist.com/news/technology-quarterly/21728778-and-early-diagnosis-saves-lives-understanding-cancers-unruly-origins-helps-early-0. 
  4. Gingras, Isabelle; Salgado, Roberto; Ignatiadis, Michail (November 2015). "Liquid biopsy: will it be the 'magic tool' for monitoring response of solid tumors to anticancer therapies?". Current Opinion in Oncology 27 (6): 560–567. doi:10.1097/CCO.0000000000000223. PMID 26335664. 
  5. "Liquid Biopsy - an overview | ScienceDirect Topics". https://www.sciencedirect.com/topics/medicine-and-dentistry/liquid-biopsy. 
  6. Peeters, D J E; De Laere, B; Van den Eynden, G G; Van Laere, S J; Rothé, F; Ignatiadis, M; Sieuwerts, A M; Lambrechts, D et al. (April 2013). "Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting". British Journal of Cancer 108 (6): 1358–1367. doi:10.1038/bjc.2013.92. PMID 23470469. 
  7. Agerbæk, Mette Ø.; Bang-Christensen, Sara R.; Yang, Ming-Hsin; Clausen, Thomas M.; Pereira, Marina A.; Sharma, Shreya; Ditlev, Sisse B.; Nielsen, Morten A. et al. (December 2018). "The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner". Nature Communications 9 (1): 3279. doi:10.1038/s41467-018-05793-2. PMID 30115931. Bibcode2018NatCo...9.3279A. 
  8. Thiele, Jana- A.; Pitule, Pavel; Hicks, James; Kuhn, Peter (2019). "Single-Cell Analysis of Circulating Tumor Cells". Tumor Profiling. Methods in Molecular Biology. 1908. pp. 243–264. doi:10.1007/978-1-4939-9004-7_17. ISBN 978-1-4939-9002-3. 
  9. Heitzer, E.; Ulz, P.; Geigl, J. B. (11 November 2014). "Circulating Tumor DNA as a Liquid Biopsy for Cancer". Clinical Chemistry 61 (1): 112–123. doi:10.1373/clinchem.2014.222679. PMID 25388429. 
  10. Wan, Jonathan C. M.; Massie, Charles; Garcia-Corbacho, Javier; Mouliere, Florent; Brenton, James D.; Caldas, Carlos; Pacey, Simon; Baird, Richard et al. (24 February 2017). "Liquid biopsies come of age: towards implementation of circulating tumour DNA". Nature Reviews Cancer 17 (4): 223–238. doi:10.1038/nrc.2017.7. PMID 28233803. https://www.repository.cam.ac.uk/handle/1810/262102. 
  11. "A mathematical model of ctDNA shedding predicts tumor detection size". Science Advances 6 (50): eabc4308. December 2020. doi:10.1126/sciadv.abc4308. PMID 33310847. Bibcode2020SciA....6.4308A. 
  12. Chaudhuri, Aadel A.; Pellini, Bruna; Pejovic, Nadja; Chauhan, Pradeep S.; Harris, Peter K.; Szymanski, Jeffrey J.; Smith, Zachary L.; Arora, Vivek K. (November 2020). "Emerging Roles of Urine-Based Tumor DNA Analysis in Bladder Cancer Management". JCO Precision Oncology 4 (4): 806–817. doi:10.1200/PO.20.00060. PMID 32923907. 
  13. Bicocca, Vincent T.; Phillips, Kevin G.; Fischer, Daniel S.; Caruso, Vincent M.; Goudarzi, Mahdi; Garcia-Ransom, Monica; Lentz, Peter S.; MacBride, Andrew R. et al. (September 2022). "Urinary Comprehensive Genomic Profiling Correlates Urothelial Carcinoma Mutations with Clinical Risk and Efficacy of Intervention" (in en). Journal of Clinical Medicine 11 (19): 5827. doi:10.3390/jcm11195827. ISSN 2077-0383. PMID 36233691. 
  14. Ward, DG; Nyangoma, S; Joy, H; Hamilton, E; Wei, W; Tselepis, C; Steven, N; Wakelam, MJ et al. (16 June 2008). "Proteomic profiling of urine for the detection of colon cancer.". Proteome Science 6: 19. doi:10.1186/1477-5956-6-19. PMID 18558005. 
  15. Arasaradnam, RP; Wicaksono, A; O'Brien, H; Kocher, HM; Covington, JA; Crnogorac-Jurcevic, T (February 2018). "Noninvasive Diagnosis of Pancreatic Cancer Through Detection of Volatile Organic Compounds in Urine.". Gastroenterology 154 (3): 485–487.e1. doi:10.1053/j.gastro.2017.09.054. PMID 29129714. 
  16. Bethel, Kelly; Luttgen, Madelyn S; Damani, Samir; Kolatkar, Anand; Lamy, Rachelle; Sabouri-Ghomi, Mohsen; Topol, Sarah; Topol, Eric J et al. (9 January 2014). "Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction". Physical Biology 11 (1): 016002. doi:10.1088/1478-3975/11/1/016002. PMID 24406475. Bibcode2014PhBio..11a6002B. 
  17. Pyykkö, Okko T.; Lumela, Miikka; Rummukainen, Jaana; Nerg, Ossi; Seppälä, Toni T.; Herukka, Sanna-Kaisa; Koivisto, Anne M.; Alafuzoff, Irina et al. (17 March 2014). "Cerebrospinal Fluid Biomarker and Brain Biopsy Findings in Idiopathic Normal Pressure Hydrocephalus". PLOS ONE 9 (3): e91974. doi:10.1371/journal.pone.0091974. PMID 24638077. Bibcode2014PLoSO...991974P. 
  18. Mouliere F, Mair R, Chandrananda D, Marass F, Smith CG, Su J, Morris J, Watts C, Brindle KM, Rosenfeld N (2018). "Detection of cell-free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients". EMBO Mol Med 10 (12): e9323. doi:10.15252/emmm.201809323. PMID 30401727. 
  19. Rafi, Imran; Hill, Melissa; Hayward, Judith; Chitty, Lyn S (July 2017). "Non-invasive prenatal testing: use of cell-free fetal DNA in Down syndrome screening". British Journal of General Practice 67 (660): 298–299. doi:10.3399/bjgp17X691625. PMID 28663415. 
  20. Singh, Ripudaman; Hatt, Lotte; Ravn, Katarina; Vogel, Ida; Petersen, Olav Bjørn; Uldbjerg, Niels; Schelde, Palle (September 2017). "Fetal cells in maternal blood for prenatal diagnosis: a love story rekindled". Biomarkers in Medicine 11 (9): 705–710. doi:10.2217/bmm-2017-0055. PMID 28617034. 
  21. Weiner, Carl P.; Lee, Gene T. (2017). "Cordocentesis". Operative Obstetrics, 4E. Routledge. doi:10.1201/9781315382739. ISBN 978-1-4987-2056-4. https://www.taylorfrancis.com/chapters/edit/10.1201/9781315382739-16/cordocentesis-carl-weiner-gene-lee. 
  22. Perni, Sriram C.; Roost, John R.; Chervenak, Frank A. (2017). "Amniocentesis". Operative Obstetrics, 4E. Routledge. doi:10.1201/9781315382739. ISBN 978-1-4987-2056-4. https://www.taylorfrancis.com/chapters/edit/10.1201/9781315382739-11/amniocentesis-sriram-perni-john-roost-frank-chervenak. 
  23. Nascimento da Silva, Monica; Sicchieri, Letícia Bonfante; Rodrigues de Oliveira Silva, Flávia; Andrade, Maira Franco; Courrol, Lilia Coronato (2014). "Liquid biopsy of atherosclerosis using protoporphyrin IX as a biomarker". The Analyst 139 (6): 1383–8. doi:10.1039/c3an01945d. PMID 24432352. Bibcode2014Ana...139.1383N. 
  24. "What is circulating tumor DNA and how is it used to diagnose and manage cancer?: MedlinePlus Genetics" (in en). https://medlineplus.gov/genetics/understanding/testing/circulatingtumordna/. 
  25. "What is circulating tumor DNA and how is it used to diagnose and manage cancer? ". National Institutes of Health Genetics Home Reference. 5 March 2019. Retrieved 12 March 2019.
  26. "Liquid Biopsies Show High Correlation with Tissue Biopsy for Genetic Mutations" . Oncology Practice Management. July 2016. Retrieved 12 March 2019.
  27. "Cell-free DNA as a biomarker in cancer". Extracell Vesicles Circ Nucleic Acid. Aug 2022. Retrieved 04 Aug 2022.
  28. Picher, Andy."Liquid Biopsy, Key for Precision Medicine". Genetic Engineering & Biotechnology News. 23 July 2018. Retrieved 12 March 2019.
  29. "Liquid Biopsy: Differences Among Technologies" . OncLive. 17 September 2017. Retrieved 12 March 2019.
  30. Ellis, Jen."dPCR: The Emergence of the Digital Age". Biocompare. 7 May 2018. Retrieved 12 March 2019.
  31. van der Pol Y, Mouliere F (2019). "Toward the early detection of cancer by decoding the epigenetic and environmental fingerprints of cell-free DNA". Cancer Cell 36 (4): 350–368. doi:10.1016/j.ccell.2019.09.003. PMID 31614115. 
  32. McDowell, Sandy."Liquid Biopsies: Past, Present, and Future". American Cancer Society. 12 February 2018. Retrieved 12 March 2019.
  33. "Liquid Biopsy: Using DNA in Blood to Detect, Track, and Treat Cancer". National Cancer Institute. 8 November 2017. Retrieved 12 March 2019.
  34. Olsson, Eleonor; Winter, Christof (2015). "Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease". EMBO Molecular Medicine 7 (8): 1034–1047. doi:10.15252/emmm.201404913. PMID 25987569. 
  35. "Liquid Biopsy Market - A Global and Regional Analysis: Focus on Offering, Usage, Workflow, Circulating Biomarker, Sample, Technology, Clinical Application, End User, and Region - Analysis and Forecast, 2022-2032" (in en). https://bisresearch.com/industry-report/liquid-biopsy-market-report.html. 
  36. Brito-Rocha, Tiago; Constâncio, Vera; Henrique, Rui; Jerónimo, Carmen (18 March 2023). "Shifting the Cancer Screening Paradigm: The Rising Potential of Blood-Based Multi-Cancer Early Detection Tests". Cells 12 (6): 935. doi:10.3390/cells12060935. ISSN 2073-4409. PMID 36980276. 
  37. Kwapisz, Dorota (February 2017). "The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer?". Annals of Translational Medicine 5 (3): 46. doi:10.21037/atm.2017.01.32. ISSN 2305-5839. PMID 28251125. 
  38. Karachaliou, N; Mayo-de-Las-Casas, C; Molina-Vila, MA; Rosell, R (March 2015). "Real-time liquid biopsies become a reality in cancer treatment.". Annals of Translational Medicine 3 (3): 36. doi:10.3978/j.issn.2305-5839.2015.01.16. PMID 25815297.