Mehler kernel

From HandWiki
Short description: Complex-valued function

The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.

It was first discovered by Mehler in 1866, and since then, as Einar Hille remarked in 1932, "has been rediscovered by almost everybody who has worked in this field".[1]

Mehler's formula

Mehler (1866) defined a function[2]

E(x,y)=11ρ2exp(ρ2(x2+y2)2ρxy(1ρ2)),

and showed, in modernized notation,[3] that it can be expanded in terms of Hermite polynomials H() based on weight function exp(x2) as

E(x,y)=n=0(ρ/2)nn!Hn(x)Hn(y).

This result is useful, in modified form, in quantum physics, probability theory, and harmonic analysis. Equivalently, in the probabilist's Hermite polynomials:11ρ2exp(ρ2(x2+y2)2ρxy2(1ρ2))=n=0ρnn!Hen(x)Hen(y) Substituting ρ=et, and letting hn:=Hen/n!, we have tanh(t/2)exp(et(x2+y2)2xy4sinht)=n=0(1et)enthn(x)hn(y)

Physics version

In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel. It provides the fundamental solution[4] φ(x,t) to

φt=2φx2x2φDxφ.

The orthonormal eigenfunctions of the operator D are the Hermite functions,

ψn=Hn(x)exp(x2/2)2nn!π,

with corresponding eigenvalues (2n1), furnishing particular solutions

φn(x,t)=e(2n+1)tHn(x)exp(x2/2).

The general solution is then a linear combination of these; when fitted to the initial condition φ(x,0), the general solution reduces to

φ(x,t)=K(x,y;t)φ(y,0)dy,

where the kernel K has the separable representation

K(x,y;t)n0e(2n+1)tπ2nn!Hn(x)Hn(y)exp((x2+y2)/2).

Utilizing Mehler's formula then yields

n0(ρ/2)nn!Hn(x)Hn(y)exp((x2+y2)/2)=1(1ρ2)exp(4xyρ(1+ρ2)(x2+y2)2(1ρ2)).

On substituting this in the expression for K with the value e2t for ρ, Mehler's kernel finally reads

K(x,y;t)=12πsinh(2t)exp(coth(2t)(x2+y2)/2+csch(2t)xy).

When t=0, variables x and y coincide, resulting in the limiting formula necessary by the initial condition,

K(x,y;0)=δ(xy).

As a fundamental solution, the kernel is additive,

dyK(x,y;t)K(y,z;t)=K(x,z;t+t).

This is further related to the symplectic rotation structure of the kernel K.[5]

When using the usual physics conventions of defining the quantum harmonic oscillator instead via

iφt=12(2x2+x2)φHφ,

and assuming natural length and energy scales, then the Mehler kernel becomes the Feynman propagator KH which reads

xexp(itH)yKH(x,y;t)=12πisintexp(i2sint((x2+y2)cost2xy)),t<π,

i.e. KH(x,y;t)=K(x,y;it/2).

When t>π the isint in the inverse square-root should be replaced by |sint| and KH should be multiplied by an extra Maslov phase factor [6]

exp(iθMaslov)=exp(iπ2(12+tπ)).

When t=π/2 the general solution is proportional to the Fourier transform of the initial conditions φ0(y)φ(y,0) since

φ(x,t=π/2)=KH(x,y;π/2)φ(y,0)dy=12πiexp(ixy)φ(y,0)dy=exp(iπ/4)[φ0](x),

and the exact Fourier transform is thus obtained from the quantum harmonic oscillator's number operator written as[7]

N12(xx)(x+x)=H12=12(2x2+x21)

since the resulting kernel

xexp(itN)yKN(x,y;t)=exp(it/2)KH(x,y;t)=exp(it/2)K(x,y;it/2)

also compensates for the phase factor still arising in KH and K, i.e.

φ(x,t=π/2)=KN(x,y;π/2)φ(y,0)dy=[φ0](x),

which shows that the number operator can be interpreted via the Mehler kernel as the generator of fractional Fourier transforms for arbitrary values of t, and of the conventional Fourier transform for the particular value t=π/2, with the Mehler kernel providing an active transform, while the corresponding passive transform is already embedded in the basis change from position to momentum space. The eigenfunctions of N are the usual Hermite functions ψn(x) which are therefore also Eigenfunctions of .[8]

Proofs

There are many proofs of the formula.

The formula is a special case of the Hardy–Hille formula, using the fact that the Hermite polynomials are a special case of the associated Laguerre polynomials:H2n(x)=(1)n22nn!Ln(1/2)(x2)H2n+1(x)=(1)n22n+1n!xLn(1/2)(x2)The formula is a special case of the Kibble–Slepian formula, so any proof of it immediately yields of proof of the Mehler formula.[9]

Foata gave a combinatorial proof of the formula.[10]

Hardy gave a simple proof by the Fourier integral representation of Hermite polynomials.[11] Using the Fourier transform of the Gaussian ex2=1πet2+2ixtdt, we haveHn(x)=(1)nex2dndxnex2=ex2π(2it)net2+2ixtdtfrom which the summation n=0(ρ/2)nn!Hn(x)Hn(y) converts to a double integral over a summationex2+y2π2e(t2+s2)+2ixt+2iysn=0(2tsρ)nn!dtdswhich can be evaluated directly as two Gaussian integrals.

Probability version

The result of Mehler can also be linked to probability. For this, the variables should be rescaled as xx/2, yy/2, so as to change from the "physicist's" Hermite polynomials H() (with weight function exp(x2)) to "probabilist's" Hermite polynomials He() (with weight function exp(x2/2)). They satisfyHn(x)=2n2Hen(2x),Hen(x)=2n2Hn(x2).Then, E becomes

11ρ2exp(ρ2(x2+y2)2ρxy2(1ρ2))=n=0ρnn!Hen(x)Hen(y).

The left-hand side here is p(x,y)/p(x)p(y) where p(x,y) is the bivariate Gaussian probability density function for variables x,y having zero means and unit variances:

p(x,y)=12π1ρ2exp((x2+y2)2ρxy2(1ρ2)),

and p(x),p(y) are the corresponding probability densities of x and y (both standard normal).

There follows the usually quoted form of the result (Kibble 1945)[12]

p(x,y)=p(x)p(y)n=0ρnn!Hen(x)Hen(y).

The exponent can be written in a more symmetric form:11ρ2exp(ρ(x+y)24(1+ρ)ρ(xy)24(1ρ))=n=0ρnn!Hen(x)Hen(y).This expansion is most easily derived by using the two-dimensional Fourier transform of p(x,y), which is

c(iu1,iu2)=exp((u12+u222ρu1u2)/2).

This may be expanded as

exp((u12+u22)/2)n=0ρnn!(u1u2)n.

The Inverse Fourier transform then immediately yields the above expansion formula.

This result can be extended to the multidimensional case.[12][13][14]

Erdélyi gave this as an integral over the complex plane[15]n=0ρnn!Hen(x)Hen(y)=1πtexp[u2+v2ρ+(u+iv)x+(uiv)y12(u+iv)212(uiv)2]dudv.which can be integrated with two Gaussian integrals, yielding the Mehler formula.

Fractional Fourier transform

Since Hermite functions ψn are orthonormal eigenfunctions of the Fourier transform,

[ψn](y)=(i)nψn(y),

in harmonic analysis and signal processing, they diagonalize the Fourier operator,

[f](y)=dxf(x)n0(i)nψn(x)ψn(y).

Thus, the continuous generalization for real angle α can be readily defined (Wiener, 1929;[16] Condon, 1937[17]), the fractional Fourier transform (FrFT), with kernel

α=n0(i)2αn/πψn(x)ψn(y).

This is a continuous family of linear transforms generalizing the Fourier transform, such that, for α=π/2, it reduces to the standard Fourier transform, and for α=π/2 to the inverse Fourier transform.

The Mehler formula, for ρ=exp(iα), thus directly provides

α[f](y)=1icot(α)2πeicot(α)2y2ei(csc(α)yxcot(α)2x2)f(x)dx.

The square root is defined such that the argument of the result lies in the interval [π/2,π/2].

If α is an integer multiple of π, then the above cotangent and cosecant functions diverge. In the limit, the kernel goes to a Dirac delta function in the integrand, δ(xy) or δ(x+y), for α an even or odd multiple of π, respectively. Since 2[f]=f(x), α[f] must be simply f(x) or f(x) for α an even or odd multiple of π, respectively.

See also

References

  1. Hardy, G. H. (1932-07-01). "Addendum: Summation of a Series of Polynomials of Laguerre*". Journal of the London Mathematical Society s1-7 (3): 192. doi:10.1112/jlms/s1-7.3.192-s. ISSN 0024-6107. https://academic.oup.com/jlms/article/s1-7/3/192/960574. 
  2. Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" (in German), Journal für die Reine und Angewandte Mathematik (66): 161–176, ERAM 066.1720cj, ISSN 0075-4102, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002152975  (cf. p 174, eqn (18) & p 173, eqn (13) )
  3. Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1955), Higher transcendental functions. Vol. II, McGraw-Hill  (scan:   p.194 10.13 (22))
  4. Pauli, W., Wave Mechanics: Volume 5 of Pauli Lectures on Physics (Dover Books on Physics, 2000) ISBN 0486414620 ; See section 44.
  5. The quadratic form in its exponent, up to a factor of −1/2, involves the simplest (unimodular, symmetric) symplectic matrix in Sp(2,R). That is,
    (x,y)𝐌(xy),   where
    𝐌csch(2t)(cosh(2t)11cosh(2t)),
    so it preserves the symplectic metric,
    𝐌T(0110)𝐌=(0110).
  6. Horvathy, Peter (1979). "Extended Feynman Formula for Harmonic Oscillator". International Journal of Theoretical Physics 18 (4): 245–250. doi:10.1007/BF00671761. Bibcode1979IJTP...18..245H. 
  7. Wolf, Kurt B. (1979), Integral Transforms in Science and Engineering, Springer  ([1] and [2]); see section 7.5.10.
  8. Celeghini, Enrico; Gadella, Manuel; del Olmo, Mariano A. (2021). "Hermite Functions and Fourier Series". Symmetry 13 (5): 853. doi:10.3390/sym13050853. Bibcode2021Symm...13..853C. 
  9. Ismail, Mourad E. H.; Zhang, Ruiming (2017-04-01). "A review of multivariate orthogonal polynomials". Journal of the Egyptian Mathematical Society 25 (2): 91–110. doi:10.1016/j.joems.2016.11.001. ISSN 1110-256X. https://www.sciencedirect.com/science/article/pii/S1110256X16300761#bib0028. 
  10. Foata, Dominique (1978-05-01). "A combinatorial proof of the Mehler formula". Journal of Combinatorial Theory, Series A 24 (3): 367–376. doi:10.1016/0097-3165(78)90066-3. ISSN 0097-3165. https://www.sciencedirect.com/science/article/pii/0097316578900663. 
  11. Watson, G. N. (July 1933). "Notes on Generating Functions of Polynomials: (2) Hermite Polynomials" (in en). Journal of the London Mathematical Society s1-8 (3): 194–199. doi:10.1112/jlms/s1-8.3.194. http://doi.wiley.com/10.1112/jlms/s1-8.3.194. 
  12. 12.0 12.1 Kibble, W. F. (1945). "An extension of a theorem of Mehler's on Hermite polynomials". Mathematical Proceedings of the Cambridge Philosophical Society 41 (1): 12–15. doi:10.1017/S0305004100022313. Bibcode1945PCPS...41...12K. 
  13. Slepian, David (1972), "On the symmetrized Kronecker power of a matrix and extensions of Mehler's formula for Hermite polynomials", SIAM Journal on Mathematical Analysis 3 (4): 606–616, doi:10.1137/0503060, ISSN 0036-1410 
  14. Hörmander, Lars (1995). "Symplectic classification of quadratic forms, and general Mehler formulas". Mathematische Zeitschrift 219: 413–449. doi:10.1007/BF02572374. 
  15. Erdélyi, Artur (1939-12-01). "Über eine erzeugende Funktion von Produkten Hermitescher Polynome" (in de). Mathematische Zeitschrift 44 (1): 201–211. doi:10.1007/BF01210650. ISSN 1432-1823. https://link.springer.com/article/10.1007/BF01210650. 
  16. Wiener, N (1929), "Hermitian Polynomials and Fourier Analysis", Journal of Mathematics and Physics 8: 70–73.
  17. Condon, E. U. (1937). "Immersion of the Fourier transform in a continuous group of functional transformations", Proc. Natl. Acad. Sci. USA 23, 158–164. online