Parallelization (mathematics)

From HandWiki

In mathematics, a parallelization[1] of a manifold [math]\displaystyle{ M\, }[/math] of dimension n is a set of n global smooth linearly independent vector fields.

Formal definition

Given a manifold [math]\displaystyle{ M\, }[/math] of dimension n, a parallelization of [math]\displaystyle{ M\, }[/math] is a set [math]\displaystyle{ \{X_1, \dots,X_n\} }[/math] of n smooth vector fields defined on all of [math]\displaystyle{ M\, }[/math] such that for every [math]\displaystyle{ p\in M\, }[/math] the set [math]\displaystyle{ \{X_1(p), \dots,X_n(p)\} }[/math] is a basis of [math]\displaystyle{ T_pM\, }[/math], where [math]\displaystyle{ T_pM\, }[/math] denotes the fiber over [math]\displaystyle{ p\, }[/math] of the tangent vector bundle [math]\displaystyle{ TM\, }[/math].

A manifold is called parallelizable whenever it admits a parallelization.

Examples

Properties

Proposition. A manifold [math]\displaystyle{ M\, }[/math] is parallelizable iff there is a diffeomorphism [math]\displaystyle{ \phi \colon TM \longrightarrow M\times {\mathbb R^n}\, }[/math] such that the first projection of [math]\displaystyle{ \phi\, }[/math] is [math]\displaystyle{ \tau_{M}\colon TM \longrightarrow M\, }[/math] and for each [math]\displaystyle{ p\in M\, }[/math] the second factor—restricted to [math]\displaystyle{ T_pM\, }[/math]—is a linear map [math]\displaystyle{ \phi_{p} \colon T_pM \rightarrow {\mathbb R^n}\, }[/math].

In other words, [math]\displaystyle{ M\, }[/math] is parallelizable if and only if [math]\displaystyle{ \tau_{M}\colon TM \longrightarrow M\, }[/math] is a trivial bundle. For example, suppose that [math]\displaystyle{ M\, }[/math] is an open subset of [math]\displaystyle{ {\mathbb R^n}\, }[/math], i.e., an open submanifold of [math]\displaystyle{ {\mathbb R^n}\, }[/math]. Then [math]\displaystyle{ TM\, }[/math] is equal to [math]\displaystyle{ M\times {\mathbb R^n}\, }[/math], and [math]\displaystyle{ M\, }[/math] is clearly parallelizable.[2]

See also

Notes

  1. (Bishop Goldberg), p. 160
  2. (Milnor Stasheff), p. 15.

References