Philosophy:Bernays–Schönfinkel class

From HandWiki

The Bernays–Schönfinkel class (also known as Bernays–Schönfinkel–Ramsey class) of formulas, named after Paul Bernays, Moses Schönfinkel and Frank P. Ramsey, is a fragment of first-order logic formulas where satisfiability is decidable. It is the set of sentences that, when written in prenex normal form, have an [math]\displaystyle{ \exists^*\forall^* }[/math] quantifier prefix and do not contain any function symbols.

Ramsey proved that, if [math]\displaystyle{ \phi }[/math] is a formula in the Bernays–Schönfinkel class with one free variable, then either [math]\displaystyle{ \{x \in \N : \phi(x)\} }[/math] is finite, or [math]\displaystyle{ \{x \in \N : \neg \phi(x)\} }[/math] is finite.[1]

This class of logic formulas is also sometimes referred as effectively propositional (EPR) since it can be effectively translated into propositional logic formulas by a process of grounding or instantiation.

The satisfiability problem for this class is NEXPTIME-complete.[2]

Applications

Efficient algorithms for deciding satisfiability of EPR have been integrated into SMT solvers.[3]

See also

Notes

  1. Pratt-Hartmann, Ian (2023-03-30) (in en). Fragments of First-Order Logic. Oxford University Press. pp. 186. ISBN 978-0-19-196006-2. https://academic.oup.com/book/46400. 
  2. "Complexity results for classes of quantificational formulas", Journal of Computer and System Sciences 21 (3): 317–353, 1980, doi:10.1016/0022-0000(80)90027-6 
  3. de Moura, Leonardo; Bjørner, Nikolaj (2008). Armando, Alessandro; Baumgartner, Peter; Dowek, Gilles. eds. "Deciding Effectively Propositional Logic Using DPLL and Substitution Sets" (in en). Automated Reasoning. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer): 410–425. doi:10.1007/978-3-540-71070-7_35. ISBN 978-3-540-71070-7. https://link.springer.com/chapter/10.1007/978-3-540-71070-7_35. 

References