Physics:AKLT model

From HandWiki
Short description: Model in topological quantum mechanics


In condensed matter physics, an AKLT model, also known as an Affleck-Kennedy-Lieb-Tasaki model is an extension of the one-dimensional quantum Heisenberg spin model. The proposal and exact solution of this model by Ian Affleck, Elliott H. Lieb, Tom Kennedy and Hal Tasaki (ja)[1] provided crucial insight into the physics of the spin-1 Heisenberg chain.[2][3][4][5] It has also served as a useful example for such concepts as valence bond solid order, symmetry-protected topological order[6][7][8][9] and matrix product state wavefunctions.

Background

A major motivation for the AKLT model was the Majumdar–Ghosh chain. Because two out of every set of three neighboring spins in a Majumdar–Ghosh ground state are paired into a singlet, or valence bond, the three spins together can never be found to be in a spin 3/2 state. In fact, the Majumdar–Ghosh Hamiltonian is nothing but the sum of all projectors of three neighboring spins onto a 3/2 state.

The main insight of the AKLT paper was that this construction could be generalized to obtain exactly solvable models for spin sizes other than 1/2. Just as one end of a valence bond is a spin 1/2, the ends of two valence bonds can be combined into a spin 1, three into a spin 3/2, etc.

Definition

Affleck et al. were interested in constructing a one-dimensional state with a valence bond between every pair of sites. Because this leads to two spin 1/2s for every site, the result must be the wavefunction of a spin 1 system.

For every adjacent pair of the spin 1s, two of the four constituent spin 1/2s are stuck in a total spin zero state. Therefore, each pair of spin 1s is forbidden from being in a combined spin 2 state. By writing this condition as a sum of projectors that favor the spin 2 state of pairs of spin 1s, AKLT arrived at the following Hamiltonian

[math]\displaystyle{ \hat H = \sum_{\langle ij \rangle} \textit{P}^{(2)}_{\langle ij \rangle} \sim \sum_j \vec{S}_j \cdot \vec{S}_{j+1} + \frac{1}{3} (\vec{S}_j \cdot \vec{S}_{j+1})^2 }[/math]

up to a constant, where the [math]\displaystyle{ \vec{S_i} }[/math] are spin-1 operators, and [math]\displaystyle{ \textit{P}^{(2)}_{\langle ij \rangle} }[/math] the local 2-point projector that favors the spin 2 state of an adjacent pair of spins.

This Hamiltonian is similar to the spin 1, one-dimensional quantum Heisenberg spin model but has an additional "biquadratic" spin interaction term.

Ground state

By construction, the ground state of the AKLT Hamiltonian is the valence bond solid with a single valence bond connecting every neighboring pair of sites. Pictorially, this may be represented as

AKLT GroundState.png

Here the solid points represent spin 1/2s which are put into singlet states. The lines connecting the spin 1/2s are the valence bonds indicating the pattern of singlets. The ovals are projection operators which "tie" together two spin 1/2s into a single spin 1, projecting out the spin 0 or singlet subspace and keeping only the spin 1 or triplet subspace. The symbols "+", "0" and "−" label the standard spin 1 basis states (eigenstates of the [math]\displaystyle{ S^z }[/math] operator).[10]

Spin 1/2 edge states

For the case of spins arranged in a ring (periodic boundary conditions) the AKLT construction yields a unique ground state. But for the case of an open chain, the first and last spin 1 have only a single neighbor, leaving one of their constituent spin 1/2s unpaired. As a result, the ends of the chain behave like free spin 1/2 moments even though the system consists of spin 1s only.

The spin 1/2 edge states of the AKLT chain can be observed in a few different ways. For short chains, the edge states mix into a singlet or a triplet giving either a unique ground state or a three-fold multiplet of ground states. For longer chains, the edge states decouple exponentially quickly as a function of chain length leading to a ground state manifold that is four-fold degenerate.[11] By using a numerical method such as DMRG to measure the local magnetization along the chain, it is also possible to see the edge states directly and to show that they can be removed by placing actual spin 1/2s at the ends.[12] It has even proved possible to detect the spin 1/2 edge states in measurements of a quasi-1D magnetic compound containing a small amount of impurities whose role is to break the chains into finite segments.[13] In 2021, a direct spectroscopic signature of spin 1/2 edge states was found in isolated quantum spin chains built out of triangulene, a spin 1 polycyclic aromatic hydrocarbon.[14]

Matrix product state representation

The simplicity of the AKLT ground state allows it to be represented in compact form as a matrix product state. This is a wavefunction of the form

[math]\displaystyle{ |\Psi\rangle = \sum_{\{s\}} \operatorname{Tr}[A^{s_1} A^{s_2} \ldots A^{s_N}] |s_1 s_2 \ldots s_N\rangle. }[/math]

Here the As are a set of three matrices labeled by [math]\displaystyle{ s_j }[/math] and the trace comes from assuming periodic boundary conditions.

The AKLT ground state wavefunction corresponds to the choice:[10]

[math]\displaystyle{ A^{+} = +\sqrt{\tfrac{2}{3}}\ \sigma^{+} }[/math]
[math]\displaystyle{ A^{0} = -\sqrt{\tfrac{1}{3}}\ \sigma^{z} }[/math]
[math]\displaystyle{ A^{-} = -\sqrt{\tfrac{2}{3}}\ \sigma^{-} }[/math]

where [math]\displaystyle{ \sigma }[/math] is a Pauli matrix.

Generalizations and extensions

The AKLT model has been solved on lattices of higher dimension,[1][15] even in quasicrystals .[citation needed] The model has also been constructed for higher Lie algebras including SU(n),[16][17] SO(n),[18] Sp(n)[19] and extended to the quantum groups SUq(n).[20]

References

  1. 1.0 1.1 Affleck, Ian; Kennedy, Tom; Lieb, Elliott H.; Tasaki, Hal (1987). "Rigorous results on valence-bond ground states in antiferromagnets". Physical Review Letters 59 (7): 799–802. doi:10.1103/PhysRevLett.59.799. PMID 10035874. Bibcode1987PhRvL..59..799A. 
  2. Haldane, F. D. M. (1983). "Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State". Phys. Rev. Lett. 50 (15): 1153. doi:10.1103/physrevlett.50.1153. Bibcode1983PhRvL..50.1153H. 
  3. Haldane, F. D. M. (1983). "Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model". Phys. Lett. A 93 (9): 464. doi:10.1016/0375-9601(83)90631-x. Bibcode1983PhLA...93..464H. 
  4. Affleck, I.; Haldane, F. D. M. (1987). "Critical theory of quantum spin chains". Phys. Rev. B 36 (10): 5291–5300. doi:10.1103/physrevb.36.5291. PMID 9942166. Bibcode1987PhRvB..36.5291A. 
  5. Affleck, I. (1989). "Quantum spin chains and the Haldane gap". J. Phys.: Condens. Matter 1 (19): 3047. doi:10.1088/0953-8984/1/19/001. Bibcode1989JPCM....1.3047A. 
  6. Gu, Zheng-Cheng; Wen, Xiao-Gang (2009). "Tensor-Entanglement-Filtering Renormalization Approach and Symmetry-Protected Topological Order". Phys. Rev. B 80 (15): 155131. doi:10.1103/physrevb.80.155131. Bibcode2009PhRvB..80o5131G. 
  7. Pollmann, F.; Berg, E.; Turner, Ari M.; Oshikawa, Masaki (2012). "Symmetry protection of topological phases in one-dimensional quantum spin systems". Phys. Rev. B 85 (7): 075125. doi:10.1103/PhysRevB.85.075125. Bibcode2012PhRvB..85g5125P. https://pure.uva.nl/ws/files/1587115/128856_symmetry.pdf. 
  8. Chen, Xie; Gu, Zheng-Cheng; Wen, Xiao-Gang (2011). "Classification of Gapped Symmetric Phases in 1D Spin Systems". Phys. Rev. B 83 (3): 035107. doi:10.1103/physrevb.83.035107. Bibcode2011PhRvB..83c5107C. 
  9. Chen, Xie; Liu, Zheng-Xin; Wen, Xiao-Gang (2011). "2D symmetry-protected topological orders and their protected gapless edge excitations". Phys. Rev. B 84 (23): 235141. doi:10.1103/physrevb.84.235141. Bibcode2011PhRvB..84w5141C. 
  10. 10.0 10.1 Schollwöck, Ulrich (2011). "The density-matrix renormalization group in the age of matrix product states". Annals of Physics 326 (1): 96–192. doi:10.1016/j.aop.2010.09.012. Bibcode2011AnPhy.326...96S. 
  11. Kennedy, Tom (1990). "Exact diagonalisations of open spin-1 chains". J. Phys. Condens. Matter 2 (26): 5737–5745. doi:10.1088/0953-8984/2/26/010. Bibcode1990JPCM....2.5737K. 
  12. White, Steven; Huse, David (1993). "Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain". Phys. Rev. B 48 (6): 3844–3852. doi:10.1103/PhysRevB.48.3844. PMID 10008834. Bibcode1993PhRvB..48.3844W. 
  13. Hagiwara, M.; Katsumata, K.; Affleck, Ian; Halperin, B.I.; Renard, J.P. (1990). "Observation of S=1/2 degrees of freedom in an S=1 linear-chain Heisenberg antiferromagnet". Phys. Rev. Lett. 65 (25): 3181–3184. doi:10.1103/PhysRevLett.65.3181. PMID 10042802. Bibcode1990PhRvL..65.3181H. 
  14. Mishra, Shantanu; Catarina, Gonçalo; Wu, Fupeng; Ortiz, Ricardo; Jacob, David; Eimre, Kristjan; Ma, Ji; Pignedoli, Carlo A. et al. (13 October 2021). "Observation of fractional edge excitations in nanographene spin chains". Nature 598 (7880): 287–292. doi:10.1038/s41586-021-03842-3. PMID 34645998. Bibcode2021Natur.598..287M. 
  15. Wei, T.-C.; Affleck, I.; Raussendorf, R. (2012). "Affleck-Kennedy-Lieb-Tasaki State on a Honeycomb Lattice is a Universal Quantum Computational Resource". Phys. Rev. Lett. 106 (7): 070501. doi:10.1103/PhysRevLett.106.070501. PMID 21405505. Bibcode2011PhRvL.106g0501W. 
  16. Greiter, Martin; Rachel, Stephan; Schuricht, Dirk (2007). "Exact results for SU(3) spin chains: Trimer states, valence bond solids, and their parent Hamiltonians". Phys. Rev. B 75 (6): 060401(R). doi:10.1103/PhysRevB.75.060401. Bibcode2007PhRvB..75f0401G. 
  17. Greiter, Martin; Rachel, Stephan (2007). "Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap". Phys. Rev. B 75 (18): 184441. doi:10.1103/PhysRevB.75.184441. Bibcode2007PhRvB..75r4441G. 
  18. Tu, Hong-Hao; Zhang, Guang-Ming; Xiang, Tao (2008). "Class of exactly solvable SO(n) symmetric spin chains with matrix product ground states". Phys. Rev. B 78 (9): 094404. doi:10.1103/PhysRevB.78.094404. Bibcode2008PhRvB..78i4404T. 
  19. Schuricht, Dirk; Rachel, Stephan (2008). "Valence bond solid states with symplectic symmetry". Phys. Rev. B 78 (1): 014430. doi:10.1103/PhysRevB.78.014430. Bibcode2008PhRvB..78a4430S. 
  20. Santos, R. A.; Paraan, F. N. C.; Korepin, V. E.; Klümper, A. (2012). "Entanglement spectra of the q-deformed Affleck–Kennedy–Lieb–Tasaki model and matrix product states". EPL 98 (3): 37005. doi:10.1209/0295-5075/98/37005. ISSN 0295-5075. Bibcode2012EL.....9837005S.