Physics:Hydride compressor

From HandWiki
Short description: Hydrogen compressor based on absorption and desorption of hydrogen

A hydride compressor is a hydrogen compressor based on metal hydrides with absorption of hydrogen at low pressure, releasing heat, and desorption of hydrogen at high pressure, absorbing heat, by raising the temperature with an external heat source like a heated waterbed or electric coil.[1][2][3][4]

Advantages of the hydride compressor are the high volumetric density, no moving parts, simplicity in design and operation, the possibility to consume waste heat instead of electricity[5] and reversible absorption/desorption, disadvantages are the high cost of the metal hydride and weight.

Thermodynamic compression cycle of hydride compressor

History

The first applications of metal hydrides were made by NASA to demonstrate long-term hydrogen storage for use in space propulsion. In the 1970s, automobiles, vans, and forklifts were demonstrated.[6] The metal hydrides were used for hydrogen storage, separation, and refrigeration. An example of current use are hydrogen sorption cryocoolers[7] and portable metal hydride compressors.[8]

See also

References

  1. Metal hydride thermal sorption compressor[yes|permanent dead link|dead link}}]
  2. Hydride compressor
  3. Popeneciu, G.; Almasan, V.; Coldea, I.; Lupu, D.; Misan, I.; Ardelean, O. (2009). "Investigation on a three-stage hydrogen thermal compressor based on metal hydrides". Journal of Physics: Conference Series 182 (1): 012053. doi:10.1088/1742-6596/182/1/012053. Bibcode2009JPhCS.182a2053P. 
  4. Wang, X.; Bei, Y.; Song, X.; Fang, G.; Li, S.; Chen, C.; Wang, Q. (2007). "Investigation on high-pressure metal hydride hydrogen compressors". International Journal of Hydrogen Energy 32 (16): 4011–4015. doi:10.1016/j.ijhydene.2007.03.002. 
  5. Lototskyy, M.V.; Yartys, V.A.; Pollet, B.G.; Bowman, R.C. (4 April 2012). "Metal hydride hydrogen compressors: A review" (in en). International Journal of Hydrogen Energy 39 (11): 5818–5851. doi:10.1016/j.ijhydene.2014.01.158. 
  6. Chandra, Dhanesh; Reilly, James J.; Chellappa, Raja (2006). "Metal hydrides for vehicular applications: The state of the art". JOM 58 (2): 26–32. doi:10.1007/s11837-006-0005-0. Bibcode2006JOM....58b..26C. https://doi.org/10.1007%2Fs11837-006-0005-0. 
  7. Bowman, R. C.; Prina, M.; Barber, D. S.; Bhandari, P.; Crumb, D.; Loc, A. S.; Morgante, G.; Reiter, J. W. et al. (2003). "Evaluation of Hydride Compressor Elements for the Planck Sorption Cryocooler". Cryocoolers 12. pp. 627–635. doi:10.1007/0-306-47919-2_83. ISBN 978-0-306-47714-0. https://doi.org/10.1007%2F0-306-47919-2_83. 
  8. Metal hydride compressor