Physics:Magnetic topological insulator

From HandWiki
Short description: Topological insulators of magnetic materials


Magnetic topological insulators are three dimensional magnetic materials with a non-trivial topological index protected by a symmetry other than time-reversal.[1][2][3][4][5] In contrast with a non-magnetic topological insulator, a magnetic topological insulator can have naturally gapped surface states as long as the quantizing symmetry is broken at the surface. These gapped surfaces exhibit a topologically protected half-quantized surface anomalous Hall conductivity ([math]\displaystyle{ e^2/2h }[/math]) perpendicular to the surface. The sign of the half-quantized surface anomalous Hall conductivity depends on the specific surface termination.[6]

Theory

Axion coupling

The [math]\displaystyle{ \mathbb{Z}_2 }[/math] classification of a 3D crystalline topological insulator can be understood in terms of the axion coupling [math]\displaystyle{ \theta }[/math]. A scalar quantity that is determined from the ground state wavefunction[7]

[math]\displaystyle{ \theta = -\frac{1}{4\pi}\int_{\rm BZ} d^3k \, \epsilon^{\alpha \beta \gamma} \text{Tr} \Big[ \mathcal{A}_\alpha \partial_\beta \mathcal{A}_\gamma -i\frac{2}{3} \mathcal{A}_\alpha \mathcal{A}_\beta \mathcal{A}_\gamma \Big] }[/math] .

where [math]\displaystyle{ \mathcal{A}_\alpha }[/math] is a shorthand notation for the Berry connection matrix

[math]\displaystyle{ \mathcal{A}_j^{nm}(\mathbf{k}) = \langle u_{n\mathbf{k}} | i\partial_{k_j} | u_{m\mathbf{k}} \rangle }[/math],

where [math]\displaystyle{ | u_{m\mathbf{k}} \rangle }[/math] is the cell-periodic part of the ground state Bloch wavefunction.

The topological nature of the axion coupling is evident if one considers gauge transformations. In this condensed matter setting a gauge transformation is a unitary transformation between states at the same [math]\displaystyle{ \mathbf{k} }[/math] point

[math]\displaystyle{ |\tilde{\psi}_{n\mathbf{k}}\rangle = U_{mn}(\mathbf{k})|\psi_{n\mathbf{k}}\rangle }[/math].

Now a gauge transformation will cause [math]\displaystyle{ \theta \rightarrow \theta +2\pi n }[/math] , [math]\displaystyle{ n \in \mathbb{N} }[/math]. Since a gauge choice is arbitrary, this property tells us that [math]\displaystyle{ \theta }[/math] is only well defined in an interval of length [math]\displaystyle{ 2\pi }[/math] e.g. [math]\displaystyle{ \theta \in [-\pi,\pi] }[/math].

The final ingredient we need to acquire a [math]\displaystyle{ \mathbb{Z}_2 }[/math] classification based on the axion coupling comes from observing how crystalline symmetries act on [math]\displaystyle{ \theta }[/math].

  • Fractional lattice translations [math]\displaystyle{ \tau_q }[/math], n-fold rotations [math]\displaystyle{ C_n }[/math]: [math]\displaystyle{ \theta \rightarrow \theta }[/math].
  • Time-reversal [math]\displaystyle{ T }[/math], inversion [math]\displaystyle{ I }[/math]: [math]\displaystyle{ \theta \rightarrow -\theta }[/math].

The consequence is that if time-reversal or inversion are symmetries of the crystal we need to have [math]\displaystyle{ \theta = -\theta }[/math] and that can only be true if [math]\displaystyle{ \theta = 0 }[/math](trivial),[math]\displaystyle{ \pi }[/math](non-trivial) (note that [math]\displaystyle{ -\pi }[/math] and [math]\displaystyle{ \pi }[/math] are identified) giving us a [math]\displaystyle{ \mathbb{Z}_2 }[/math] classification. Furthermore, we can combine inversion or time-reversal with other symmetries that do not affect [math]\displaystyle{ \theta }[/math] to acquire new symmetries that quantize [math]\displaystyle{ \theta }[/math]. For example, mirror symmetry can always be expressed as [math]\displaystyle{ m=I*C_2 }[/math] giving rise to crystalline topological insulators,[8] while the first intrinsic magnetic topological insulator MnBi[math]\displaystyle{ _2 }[/math]Te[math]\displaystyle{ _4 }[/math][9][10] has the quantizing symmetry [math]\displaystyle{ S=T*\tau_{1/2} }[/math].

Surface anomalous hall conductivity

So far we have discussed the mathematical properties of the axion coupling. Physically, a non-trivial axion coupling ([math]\displaystyle{ \theta = \pi }[/math]) will result in a half-quantized surface anomalous Hall conductivity ([math]\displaystyle{ \sigma^{\text{surf}}_{\text{AHC}}=e^2/2h }[/math]) if the surface states are gapped. To see this, note that in general [math]\displaystyle{ \sigma^{\text{surf}}_{\text{AHC}} }[/math] has two contribution. One comes from the axion coupling [math]\displaystyle{ \theta }[/math], a quantity that is determined from bulk considerations as we have seen, while the other is the Berry phase [math]\displaystyle{ \phi }[/math] of the surface states at the Fermi level and therefore depends on the surface. In summary for a given surface termination the perpendicular component of the surface anomalous Hall conductivity to the surface will be

[math]\displaystyle{ \sigma^{\text{surf}}_{\text{AHC}} = -\frac{e^2}{h}\frac{\theta-\phi}{2\pi} \ \text{mod} \ e^2/h }[/math].

The expression for [math]\displaystyle{ \sigma^{\text{surf}}_{\text{AHC}} }[/math] is defined [math]\displaystyle{ \text{mod} \ e^2/h }[/math] because a surface property ([math]\displaystyle{ \sigma^{\text{surf}}_{\text{AHC}} }[/math]) can be determined from a bulk property ([math]\displaystyle{ \theta }[/math]) up to a quantum. To see this, consider a block of a material with some initial [math]\displaystyle{ \theta }[/math] which we wrap with a 2D quantum anomalous Hall insulator with Chern index [math]\displaystyle{ C=1 }[/math]. As long as we do this without closing the surface gap, we are able to increase [math]\displaystyle{ \sigma^{\text{surf}}_{\text{AHC}} }[/math] by [math]\displaystyle{ e^2/h }[/math] without altering the bulk, and therefore without altering the axion coupling [math]\displaystyle{ \theta }[/math].

One of the most dramatic effects occurs when [math]\displaystyle{ \theta=\pi }[/math] and time-reversal symmetry is present, i.e. non-magnetic topological insulator. Since [math]\displaystyle{ \boldsymbol{\sigma}^{\text{surf}}_{\text{AHC}} }[/math] is a pseudovector on the surface of the crystal, it must respect the surface symmetries, and [math]\displaystyle{ T }[/math] is one of them, but [math]\displaystyle{ T\boldsymbol{\sigma}^{\text{surf}}_{\text{AHC}} =- \boldsymbol{\sigma}^{\text{surf}}_{\text{AHC}} }[/math] resulting in [math]\displaystyle{ \boldsymbol{\sigma}^{\text{surf}}_{\text{AHC}} = 0 }[/math]. This forces [math]\displaystyle{ \phi = \pi }[/math] on every surface resulting in a Dirac cone (or more generally an odd number of Dirac cones) on every surface and therefore making the boundary of the material conducting.

On the other hand, if time-reversal symmetry is absent, other symmetries can quantize [math]\displaystyle{ \theta=\pi }[/math] and but not force [math]\displaystyle{ \boldsymbol{\sigma}^{\text{surf}}_{\text{AHC}} }[/math] to vanish. The most extreme case is the case of inversion symmetry (I). Inversion is never a surface symmetry and therefore a non-zero [math]\displaystyle{ \boldsymbol{\sigma}^{\text{surf}}_{\text{AHC}} }[/math] is valid. In the case that a surface is gapped, we have [math]\displaystyle{ \phi = 0 }[/math] which results in a half-quantized surface AHC [math]\displaystyle{ \sigma^{\text{surf}}_{\text{AHC}} = -\frac{e^2}{2h} }[/math].

A half quantized surface Hall conductivity and a related treatment is also valid to understand topological insulators in magnetic field [11] giving an effective axion description of the electrodynamics of these materials.[12] This term leads to several interesting predictions including a quantized magnetoelectric effect.[13] Evidence for this effect has recently been given in THz spectroscopy experiments performed at the Johns Hopkins University.[14]

Experimental realizations

References

  1. Bao, Lihong; Wang, Weiyi; Meyer, Nicholas; Liu, Yanwen; Zhang, Cheng; Wang, Kai; Ai, Ping; Xiu, Faxian (2013). "Quantum corrections crossover and ferromagnetism in magnetic topological insulators" (in en-US). Scientific Reports 3: 2391. doi:10.1038/srep02391. PMID 23928713. Bibcode2013NatSR...3E2391B. 
  2. "'Magnetic topological insulator' makes its own magnetic field" (in en-us). Phys.org. https://phys.org/news/2018-11-magnetic-topological-insulator-field.html. 
  3. Xu, Su-Yang et al. (2012). "Hedgehog spin texture and Berry's phase tuning in a Magnetic Topological Insulator" (in en). Nature Physics 8 (8): 616–622. doi:10.1038/nphys2351. ISSN 1745-2481. Bibcode2012NatPh...8..616X. https://www.nature.com/articles/nphys2351. 
  4. Hasan, M. Zahid; Xu, Su-Yang; Neupane, Madhab (2015), "Topological Insulators, Topological Dirac semimetals, Topological Crystalline Insulators, and Topological Kondo Insulators" (in en), Topological Insulators (John Wiley & Sons, Ltd): pp. 55–100, doi:10.1002/9783527681594.ch4, ISBN 978-3-527-68159-4, https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527681594.ch4, retrieved 2020-04-23 
  5. Hasan, M. Z.; Kane, C. L. (2010-11-08). "Colloquium: Topological insulators". Reviews of Modern Physics 82 (4): 3045–3067. doi:10.1103/RevModPhys.82.3045. Bibcode2010RvMP...82.3045H. 
  6. Varnava, Nicodemos; Vanderbilt, David (2018-12-13). "Surfaces of axion insulators". Physical Review B 98 (24): 245117. doi:10.1103/PhysRevB.98.245117. Bibcode2018PhRvB..98x5117V. 
  7. Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng (24 November 2008). "Topological field theory of time-reversal invariant insulators". Physical Review B 78 (19): 195424. doi:10.1103/PhysRevB.78.195424. Bibcode2008PhRvB..78s5424Q. 
  8. Fu, Liang (8 March 2011). "Topological Crystalline Insulators". Physical Review Letters 106 (10): 106802. doi:10.1103/PhysRevLett.106.106802. PMID 21469822. Bibcode2011PhRvL.106j6802F. 
  9. Gong, Yan (2019). "Experimental realization of an intrinsic magnetic topological insulator". Chinese Physics Letters 36 (7): 076801. doi:10.1088/0256-307X/36/7/076801. Bibcode2019ChPhL..36g6801G. 
  10. Otrokov, Mikhail M. (2019). "Prediction and observation of the first antiferromagnetic topological insulator". Nature 576 (7787): 416–422. doi:10.1038/s41586-019-1840-9. PMID 31853084. 
  11. Wilczek, Frank (4 May 1987). "Two applications of axion electrodynamics". Physical Review Letters 58 (18): 1799–1802. doi:10.1103/PhysRevLett.58.1799. PMID 10034541. Bibcode1987PhRvL..58.1799W. 
  12. Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng (24 November 2008). "Topological field theory of time-reversal invariant insulators". Physical Review B 78 (19): 195424. doi:10.1103/PhysRevB.78.195424. Bibcode2008PhRvB..78s5424Q. 
  13. Franz, Marcel (24 November 2008). "High-energy physics in a new guise". Physics 1: 36. doi:10.1103/Physics.1.36. Bibcode2008PhyOJ...1...36F. 
  14. Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P. (2 December 2016). "Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator" (in en). Science 354 (6316): 1124–1127. doi:10.1126/science.aaf5541. ISSN 0036-8075. PMID 27934759. Bibcode2016Sci...354.1124W.