Physics:Rosenau–Hyman equation
From HandWiki
The Rosenau–Hyman equation or K(n,n) equation is a KdV-like equation having compacton solutions. This nonlinear partial differential equation is of the form[1]
- [math]\displaystyle{ u_t+a(u^n)_x+(u^n)_{xxx}=0. \, }[/math]
The equation is named after Philip Rosenau and James M. Hyman, who used in their 1993 study of compactons.[2]
The K(n,n) equation has the following traveling wave solutions:
- when a > 0
- [math]\displaystyle{ u(x,t)= \left( \frac{2cn}{a(n+1)} \sin^2 \left(\frac{n-1}{2n}\sqrt{a}(x-ct+b)\right)\right)^{1/(n-1)}, }[/math]
- when a < 0
- [math]\displaystyle{ u(x,t)=\left( \frac{2cn}{a(n+1)}\sinh^2\left(\frac{n-1}{2n}\sqrt{-a}(x-ct+b)\right)\right)^{1/(n-1)}, }[/math]
- [math]\displaystyle{ u(x,t)= \left( \frac{2cn}{a(n+1)} \cosh^2 \left(\frac{n-1}{2n}\sqrt{-a}(x-ct+b)\right)\right)^{1/(n-1)}. }[/math]
References
- ↑ Polyanin, Andrei D.; Zaitsev, Valentin F. (28 October 2002), Handbook of Nonlinear Partial Differential Equations (Second ed.), CRC Press, p. 891, ISBN 1584882972
- ↑ Rosenau, Philip; Hyman, James M. (1993), "Compactons: Solitons with finite wavelength", Physical Review Letters (American Physical Society) 70 (5): 564–567, doi:10.1103/PhysRevLett.70.564, PMID 10054146, Bibcode: 1993PhRvL..70..564R
![]() | Original source: https://en.wikipedia.org/wiki/Rosenau–Hyman equation.
Read more |