Physics:Rushbrooke inequality
In statistical mechanics, the Rushbrooke inequality relates the critical exponents of a magnetic system which exhibits a first-order phase transition in the thermodynamic limit for non-zero temperature T.
Since the Helmholtz free energy is extensive, the normalization to free energy per site is given as
- [math]\displaystyle{ f = -kT \lim_{N \rightarrow \infty} \frac{1}{N}\log Z_N }[/math]
The magnetization M per site in the thermodynamic limit, depending on the external magnetic field H and temperature T is given by
- [math]\displaystyle{ M(T,H) \ \stackrel{\mathrm{def}}{=}\ \lim_{N \rightarrow \infty} \frac{1}{N} \left( \sum_i \sigma_i \right) = - \left( \frac{\partial f}{\partial H} \right)_T }[/math]
where [math]\displaystyle{ \sigma_i }[/math] is the spin at the i-th site, and the magnetic susceptibility and specific heat at constant temperature and field are given by, respectively
- [math]\displaystyle{ \chi_T(T,H) = \left( \frac{\partial M}{\partial H} \right)_T }[/math]
and
- [math]\displaystyle{ c_H = -T \left( \frac{\partial^2 f}{\partial T^2} \right)_H. }[/math]
Definitions
The critical exponents [math]\displaystyle{ \alpha, \alpha', \beta, \gamma, \gamma' }[/math] and [math]\displaystyle{ \delta }[/math] are defined in terms of the behaviour of the order parameters and response functions near the critical point as follows
- [math]\displaystyle{ M(t,0) \simeq (-t)^{\beta}\mbox{ for }t \uparrow 0 }[/math]
- [math]\displaystyle{ M(0,H) \simeq |H|^{1/ \delta} \operatorname{sign}(H)\mbox{ for }H \rightarrow 0 }[/math]
- [math]\displaystyle{ \chi_T(t,0) \simeq \begin{cases} (t)^{-\gamma}, & \textrm{for} \ t \downarrow 0 \\ (-t)^{-\gamma'}, & \textrm{for} \ t \uparrow 0 \end{cases} }[/math]
- [math]\displaystyle{ c_H(t,0) \simeq \begin{cases} (t)^{-\alpha} & \textrm{for} \ t \downarrow 0 \\ (-t)^{-\alpha'} & \textrm{for} \ t \uparrow 0 \end{cases} }[/math]
where
- [math]\displaystyle{ t \ \stackrel{\mathrm{def}}{=}\ \frac{T-T_c}{T_c} }[/math]
measures the temperature relative to the critical point.
Derivation
For the magnetic analogue of the Maxwell relations for the response functions, the relation
- [math]\displaystyle{ \chi_T (c_H -c_M) = T \left( \frac{\partial M}{\partial T} \right)_H^2 }[/math]
follows, and with thermodynamic stability requiring that [math]\displaystyle{ c_H, c_M\mbox{ and }\chi_T \geq 0 }[/math], one has
- [math]\displaystyle{ c_H \geq \frac{T}{\chi_T} \left( \frac{\partial M}{\partial T} \right)_H^2 }[/math]
which, under the conditions [math]\displaystyle{ H=0, t\gt 0 }[/math] and the definition of the critical exponents gives
- [math]\displaystyle{ (-t)^{-\alpha'} \geq \mathrm{constant}\cdot(-t)^{\gamma'}(-t)^{2(\beta-1)} }[/math]
which gives the Rushbrooke inequality
- [math]\displaystyle{ \alpha' + 2\beta + \gamma' \geq 2. }[/math]
Remarkably, in experiment and in exactly solved models, the inequality actually holds as an equality.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Rushbrooke inequality.
Read more |