Physics:Scanning probe lithography

From HandWiki
Short description: Lithographic technique that uses a pen to selectively deposit material

Scanning probe lithography[1] (SPL) describes a set of nanolithographic methods to pattern material on the nanoscale using scanning probes. It is a direct-write, mask-less approach which bypasses the diffraction limit and can reach resolutions below 10 nm.[2] It is considered an alternative lithographic technology often used in academic and research environments. The term scanning probe lithography was coined after the first patterning experiments with scanning probe microscopes (SPM) in the late 1980s.[3]

Classification

The different approaches towards SPL can be classified by their goal to either add or remove material, by the general nature of the process either chemical or physical, or according to the driving mechanisms of the probe-surface interaction used in the patterning process: mechanical, thermal, diffusive and electrical.

Overview

Mechanical/thermo-mechanical

Mechanical scanning probe lithography (m-SPL) is a nanomachining or nano-scratching[4] top-down approach without the application of heat.[5] Thermo-mechanical SPL applies heat together with a mechanical force, e.g. indenting of polymers in the Millipede memory.

Thermal

Main page: Physics:Thermal scanning probe lithography

Thermal scanning probe lithography (t-SPL) uses a heatable scanning probe in order to efficiently remove material from a surface without the application of significant mechanical forces. The patterning depth can be controlled to create high-resolution 3D structures.[6][7]

Thermo-chemical

Main page: Chemistry:Thermochemical nanolithography

Thermochemical scanning probe lithography (tc-SPL) or thermochemical nanolithography (TCNL) employs the scanning probe tips to induce thermally activated chemical reactions to change the chemical functionality or the phase of surfaces. Such thermally activated reactions have been shown in proteins,[8] organic semiconductors,[9] electroluminescent conjugated polymers,[10] and nanoribbon resistors.[11] Furthermore, deprotection of functional groups[12] (sometimes involving a temperature gradients[13]), reduction of oxides,[14] and the crystallization of piezoelectric/ferroelectric ceramics[15] has been demonstrated.

Dip-pen/thermal dip-pen

Main page: Physics:Dip-pen nanolithography

Dip-pen scanning probe lithography (dp-SPL) or dip-pen nanolithography (DPN) is a scanning probe lithography technique based on diffusion, where the tip is employed to create patterns on a range of substances by deposition of a variety of liquid inks.[16][17][18] Thermal dip-pen scanning probe lithography or thermal dip-pen nanolithography (TDPN) extends the usable inks to solids, which can be deposited in their liquid form when the probes are pre-heated.[19][20][21]

Oxidation

Main page: Physics:Local oxidation nanolithography

Oxidation scanning probe lithography (o-SPL), also called local oxidation nanolithography (LON), scanning probe oxidation, nano-oxidation, local anodic oxidation, AFM oxidation lithography is based on the spatial confinement of an oxidation reaction.[22][23]

Bias induced

Bias-induced scanning probe lithography (b-SPL) uses the high electrical fields created at the apex of a probe tip when voltages are applied between tip and sample to facilitate and confining a variety of chemical reactions to decompose gases[24] or liquids[2][25] in order to locally deposit and grow materials on surfaces.

Current induced

In current induced scanning probe lithography (c-SPL) in addition to the high electrical fields of b-SPL, also a focused electron current which emanates from the SPM tip is used to create nanopatterns, e.g. in polymers[26] and molecular glasses.[27]

Magnetic

Various scanning probe techniques have been developed to write magnetization patterns into ferromagnetic structures which are often described as magnetic SPL techniques. Thermally-assisted magnetic scanning probe lithography (tam-SPL)[28] operates by employing a heatable scanning probe to locally heat and cool regions of an exchange-biased ferromagnetic layer in the presence of an external magnetic field. This causes a shift in the hysteresis loop of exposed regions, pinning the magnetization in a different orientation compared to unexposed regions. The pinned regions become stable even in the presence of external fields after cooling, allowing arbitrary nanopatterns to be written into the magnetization of the ferromagnetic layer.

In arrays of interacting ferromagnetic nano-islands such as artificial spin ice, scanning probe techniques have been used to write arbitrary magnetic patterns by locally reversing the magnetization of individual islands. Topological defect-driven magnetic writing (TMW)[29] uses the dipolar field of a magnetized scanning probe to induce topological defects in the magnetization field of individual ferromagnetic islands. These topological defects interact with the island edges and annihilate, leaving the magnetization reversed. Another way of writing such magnetic patterns is field-assisted magnetic force microscopy patterning,[30] where an external magnetic field a little below the switching field of the nano-islands is applied and a magnetized scanning probe is used to locally raise the field strength above that required to reverse the magnetization of selected islands.

In magnetic systems where interfacial Dzyaloshinskii–Moriya interactions stabilize magnetic textures known as magnetic skyrmions, scanning-probe magnetic nanolithography has been employed for the direct writing of skyrmions and skyrmion lattices.[31][32]

Comparison to other lithographic techniques

Being a serial technology, SPL is inherently slower than e.g. photolithography or nanoimprint lithography, while parallelization as required for mass-fabrication is considered a large systems engineering effort (see also Millipede memory). As for resolution, SPL methods bypass the optical diffraction limit due to their use of scanning probes compared with photolithographic methods. Some probes have integrated in-situ metrology capabilities, allowing for feedback control during the write process.[33] SPL works under ambient atmospheric conditions, without the need for ultra high vacuum (UHV), unlike e-beam or EUV lithography.

References

  1. Garcia, Ricardo; Knoll, Armin W.; Riedo, Elisa (August 2014). "Advanced scanning probe lithography". Nature Nanotechnology 9 (8): 577–587. doi:10.1038/nnano.2014.157. ISSN 1748-3387. PMID 25091447. Bibcode2014NatNa...9..577G. 
  2. 2.0 2.1 Martínez, R. V.; Losilla, N. S.; Martinez, J.; Huttel, Y.; Garcia, R. (July 1, 2007). "Patterning Polymeric Structures with 2 nm Resolution at 3 nm Half Pitch in Ambient Conditions". Nano Letters 7 (7): 1846–1850. doi:10.1021/nl070328r. ISSN 1530-6984. PMID 17352509. Bibcode2007NanoL...7.1846M. 
  3. U.S. Patent 4,785,189
  4. Yan, Yongda; Hu, Zhenjiang; Zhao, Xueshen; Sun, Tao; Dong, Shen; Li, Xiaodong (2010). "Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy". Small 6 (6): 724–728. doi:10.1002/smll.200901947. PMID 20166110. 
  5. Chen, Hsiang-An; Lin, Hsin-Yu; Lin, Heh-Nan (June 17, 2010). "Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires". The Journal of Physical Chemistry C 114 (23): 10359–10364. doi:10.1021/jp1014725. ISSN 1932-7447. 
  6. Hua, Yueming; Saxena, Shubham; Lee, Jung C.; King, William P.; Henderson, Clifford L. (2007). Lercel, Michael J. ed. "Direct three-dimensional nanoscale thermal lithography at high speeds using heated atomic-force microscope cantilevers". Emerging Lithographic Technologies XI 6517: 65171L–65171L–6. doi:10.1117/12.713374. Bibcode2007SPIE.6517E..1LH. 
  7. Pires, David; Hedrick, James L.; Silva, Anuja De; Frommer, Jane; Gotsmann, Bernd; Wolf, Heiko; Despont, Michel; Duerig, Urs et al. (2010). "Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes". Science 328 (5979): 732–735. doi:10.1126/science.1187851. ISSN 0036-8075. PMID 20413457. Bibcode2010Sci...328..732P. 
  8. Martínez, Ramsés V; Martínez, Javier; Chiesa, Marco; Garcia, Ricardo; Coronado, Eugenio; Pinilla-Cienfuegos, Elena; Tatay, Sergio (2010). "Large-scale Nanopatterning of Single Proteins used as Carriers of Magnetic Nanoparticles". Advanced Materials 22 (5): 588–591. doi:10.1002/adma.200902568. PMID 20217754. Bibcode2010AdM....22..588M. 
  9. Fenwick, Oliver; Bozec, Laurent; Credgington, Dan; Hammiche, Azzedine; Lazzerini, Giovanni Mattia; Silberberg, Yaron R.; Cacialli, Franco (October 2009). "Thermochemical nanopatterning of organic semiconductors". Nature Nanotechnology 4 (10): 664–668. doi:10.1038/nnano.2009.254. ISSN 1748-3387. PMID 19809458. Bibcode2009NatNa...4..664F. 
  10. Wang, Debin; Kim, Suenne; Ii, William D. Underwood; Giordano, Anthony J.; Henderson, Clifford L.; Dai, Zhenting; King, William P.; Marder, Seth R. et al. (2009-12-07). "Direct writing and characterization of poly(p-phenylene vinylene) nanostructures". Applied Physics Letters 95 (23): 233108. doi:10.1063/1.3271178. ISSN 0003-6951. Bibcode2009ApPhL..95w3108W. 
  11. Shaw, Joseph E; Stavrinou, Paul N; Anthopoulos, Thomas D (2013). "On-Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography". Advanced Materials 25 (4): 552–558. doi:10.1002/adma.201202877. PMID 23138983. Bibcode2013AdM....25..552S. 
  12. Wang, Debin; Kodali, Vamsi K; Underwood Ii, William D; Jarvholm, Jonas E; Okada, Takashi; Jones, Simon C; Rumi, Mariacristina; Dai, Zhenting et al. (2009). "Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects". Advanced Functional Materials 19 (23): 3696–3702. doi:10.1002/adfm.200901057. 
  13. Carroll, Keith M.; Giordano, Anthony J.; Wang, Debin; Kodali, Vamsi K.; Scrimgeour, Jan; King, William P.; Marder, Seth R.; Riedo, Elisa et al. (July 9, 2013). "Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography". Langmuir 29 (27): 8675–8682. doi:10.1021/la400996w. ISSN 0743-7463. PMID 23751047. 
  14. Wei, Zhongqing; Wang, Debin; Kim, Suenne; Kim, Soo-Young; Hu, Yike; Yakes, Michael K.; Laracuente, Arnaldo R.; Dai, Zhenting et al. (11 Jun 2010). "Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics". Science 328 (5984): 1373–1376. doi:10.1126/science.1188119. ISSN 0036-8075. PMID 20538944. Bibcode2010Sci...328.1373W. 
  15. Kim, Suenne; Bastani, Yaser; Lu, Haidong; King, William P; Marder, Seth; Sandhage, Kenneth H; Gruverman, Alexei; Riedo, Elisa et al. (2011). "Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates". Advanced Materials 23 (33): 3786–90. doi:10.1002/adma.201101991. PMID 21766356. 
  16. Jaschke, Manfred; Butt, Hans-Juergen (April 1, 1995). "Deposition of Organic Material by the Tip of a Scanning Force Microscope". Langmuir 11 (4): 1061–1064. doi:10.1021/la00004a004. ISSN 0743-7463. 
  17. Ginger, David S; Zhang, Hua; Mirkin, Chad A (2004). "The Evolution of Dip-Pen Nanolithography". Angewandte Chemie International Edition 43 (1): 30–45. doi:10.1002/anie.200300608. PMID 14694469. 
  18. Piner, Richard D.; Zhu, Jin; Xu, Feng; Hong, Seunghun; Mirkin, Chad A. (1999-01-29). ""Dip-Pen" Nanolithography". Science 283 (5402): 661–663. doi:10.1126/science.283.5402.661. ISSN 0036-8075. PMID 9924019. 
  19. Nelson, B. A.; King, W. P.; Laracuente, A. R.; Sheehan, P. E.; Whitman, L. J. (2006-01-16). "Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography". Applied Physics Letters 88 (3): 033104. doi:10.1063/1.2164394. ISSN 0003-6951. Bibcode2006ApPhL..88c3104N. 
  20. Lee, Woo-Kyung; Robinson, Jeremy T.; Gunlycke, Daniel; Stine, Rory R.; Tamanaha, Cy R.; King, William P.; Sheehan, Paul E. (December 14, 2011). "Chemically Isolated Graphene Nanoribbons Reversibly Formed in Fluorographene Using Polymer Nanowire Masks". Nano Letters 11 (12): 5461–5464. doi:10.1021/nl203225w. ISSN 1530-6984. PMID 22050117. Bibcode2011NanoL..11.5461L. 
  21. Lee, Woo Kyung; Dai, Zhenting; King, William P.; Sheehan, Paul E. (January 13, 2010). "Maskless Nanoscale Writing of Nanoparticle−Polymer Composites and Nanoparticle Assemblies using Thermal Nanoprobes". Nano Letters 10 (1): 129–133. doi:10.1021/nl9030456. ISSN 1530-6984. PMID 20028114. Bibcode2010NanoL..10..129L. 
  22. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J. (1990-05-14). "Modification of hydrogen‐passivated silicon by a scanning tunneling microscope operating in air". Applied Physics Letters 56 (20): 2001–2003. doi:10.1063/1.102999. ISSN 0003-6951. Bibcode1990ApPhL..56.2001D. https://zenodo.org/record/1231820. 
  23. Garcia, Ricardo; Martinez, Ramses V.; Martinez, Javier (16 December 2006). "Nano-chemistry and scanning probe nanolithographies - Chemical Society Reviews (RSC Publishing)". Chemical Society Reviews 35 (1): 29–38. doi:10.1039/B501599P. PMID 16365640. http://xlink.rsc.org/?DOI=B501599P. Retrieved 2015-05-08. 
  24. Garcia, R.; Losilla, N. S.; Martínez, J.; Martinez, R. V.; Palomares, F. J.; Huttel, Y.; Calvaresi, M.; Zerbetto, F. (2010-04-05). "Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope". Applied Physics Letters 96 (14): 143110. doi:10.1063/1.3374885. ISSN 0003-6951. Bibcode2010ApPhL..96n3110G. 
  25. Suez, Itai (2007). "High‐Field Scanning Probe Lithography in Hexadecane: Transitioning from Field Induced Oxidation to Solvent Decomposition through Surface Modification". Advanced Materials 19 (21): 3570–3573. doi:10.1002/adma.200700716. Bibcode2007AdM....19.3570S. 
  26. Lyuksyutov, Sergei F.; Vaia, Richard A.; Paramonov, Pavel B.; Juhl, Shane; Waterhouse, Lynn; Ralich, Robert M.; Sigalov, Grigori; Sancaktar, Erol (July 2003). "Electrostatic nanolithography in polymers using atomic force microscopy". Nature Materials 2 (7): 468–472. doi:10.1038/nmat926. ISSN 1476-1122. PMID 12819776. Bibcode2003NatMa...2..468L. 
  27. Kaestner, Marcus; Hofer, Manuel; Rangelow, Ivo W (2013). "Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography". Journal of Micro/Nanolithography, MEMS, and MOEMS 12 (3): 031111. doi:10.1117/1.JMM.12.3.031111. Bibcode2013JMM&M..12c1111K. https://zenodo.org/record/3437544. 
  28. Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A. et al. (2016). "Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography" (in En). Nature Nanotechnology 11 (6): 545–551. doi:10.1038/nnano.2016.25. ISSN 1748-3395. PMID 26950242. Bibcode2016NatNa..11..545A. https://re.public.polimi.it/bitstream/11311/1004182/1/post-print.pdf. 
  29. Gartside, J. C.; Arroo, D. M.; Burn, D. M.; Bemmer, V. L.; Moskalenko, A.; Cohen, L. F.; Branford, W. R. (2017). "Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing" (in en). Nature Nanotechnology 13 (1): 53–58. doi:10.1038/s41565-017-0002-1. PMID 29158603. Bibcode2018NatNa..13...53G. 
  30. Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, George W. et al. (20 May 2016). "Rewritable artificial magnetic charge ice" (in en). Science 352 (6288): 962–966. doi:10.1126/science.aad8037. ISSN 0036-8075. PMID 27199423. Bibcode2016Sci...352..962W. 
  31. Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan et al. (2018). "Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field" (in en). Applied Physics Letters 112 (13): 132405. doi:10.1063/1.5021172. Bibcode2018ApPhL.112m2405Z. 
  32. Ognev, A. V.; Kolesnikov, A. G.; Kim, Yong Jin; Cha, In Ho; Sadnikov, A. V.; Nikitov, S. A.; Soldatov, I. V.; Talapatra, A. et al. (2020). "Magnetic Direct-Write Skyrmion Nanolithography" (in en). ACS Nano 14 (11): 14960–14970. doi:10.1021/acsnano.0c04748. PMID 33152236. http://raiith.iith.ac.in/11228/1/Magnetic_direct_write_skyrmion_nanolithography.pdf. 
  33. [1] Scanning probe nanolithography system and method (EP2848997 A1)