Physics:Strong CP problem

From HandWiki
Short description: Question of why quantum chromodynamics does seem to not break CP-symmetry

The strong CP problem is a puzzling question in particle physics: Why does quantum chromodynamics (QCD) seem to preserve CP-symmetry?

In particle physics, CP stands for Charge+Parity or Charge-conjugation Parity symmetry: the combination of charge conjugation symmetry (C) and parity symmetry (P). According to the current mathematical formulation of quantum chromodynamics, a violation of CP-symmetry in strong interactions could occur. However, no violation of the CP-symmetry has ever been seen in any experiment involving only the strong interaction. As there is no known reason in QCD for it to necessarily be conserved, this is a "fine tuning" problem known as the strong CP problem.

The strong CP problem is sometimes regarded as an unsolved problem in physics, and has been referred to as "the most underrated puzzle in all of physics."Cite error: Closing </ref> missing for <ref> tag The most general mass term possible for the quark is a complex mass written as [math]\displaystyle{ m e^{i\theta' \gamma_5} }[/math] for some arbitrary phase [math]\displaystyle{ \theta' }[/math]. In that case the Lagrangian describing the theory consists of four terms

[math]\displaystyle{ \mathcal L = -\frac{1}{4}F_{\mu \nu}F^{\mu \nu} +\theta \frac{g^2}{32\pi^2}F_{\mu \nu}\tilde F^{\mu \nu} +\bar \psi(i\gamma^\mu D_\mu -me^{i\theta' \gamma_5})\psi. }[/math]

The first and third terms are the CP-symmetric kinetic terms of the gauge and quark fields. The fourth term is the quark mass term which is CP violating for non-zero phases [math]\displaystyle{ \theta' \neq 0 }[/math] while the second term is the so-called θ-term, which also violates CP-symmetry.

Quark fields can always be redefined by performing a chiral transformation by some angle [math]\displaystyle{ \alpha }[/math] as

[math]\displaystyle{ \psi' = e^{i\alpha \gamma_5/2}\psi, \ \ \ \ \ \ \bar \psi' = \bar \psi e^{-i\alpha \gamma_5/2}, }[/math]

which changes the complex mass phase by [math]\displaystyle{ \theta' \rightarrow \theta'-\alpha }[/math] while leaving the kinetic terms unchanged. The transformation also changes the θ-term as [math]\displaystyle{ \theta \rightarrow \theta + \alpha }[/math] due to a change in the path integral measure, an effect closely connected to the chiral anomaly.

The theory would be CP invariant if one could eliminate both sources of CP violation through such a field redefinition. But this cannot be done unless [math]\displaystyle{ \theta = -\theta' }[/math]. This is because even under such field redefinitions, the combination [math]\displaystyle{ \theta'+ \theta \rightarrow (\theta'-\alpha) + (\theta + \alpha) = \theta'+\theta }[/math] remains unchanged. For example, the CP violation due to the mass term can be eliminated by picking [math]\displaystyle{ \alpha = \theta' }[/math], but then all the CP violation goes to the θ-term which is now proportional to [math]\displaystyle{ \bar \theta }[/math]. If instead the θ-term is eliminated through a chiral transformation, then there will be a CP violating complex mass with a phase [math]\displaystyle{ \bar \theta }[/math]. Practically, it is usually useful to put all the CP violation into the θ-term and thus only deal with real masses.

In the Standard Model where one deals with six quarks whose masses are described by the Yukawa matrices [math]\displaystyle{ Y_u }[/math] and [math]\displaystyle{ Y_d }[/math], the physical CP violating angle is [math]\displaystyle{ \bar \theta = \theta - \arg \det(Y_u Y_d) }[/math]. Since the θ-term has no contributions to perturbation theory, all effects from strong CP violation is entirely non-perturbative. Notably, it gives rise to a neutron electric dipole moment[1]

[math]\displaystyle{ d_N = (5.2 \times 10^{-16}\text{e}\cdot\text{cm}) \bar \theta. }[/math]

Current experimental upper bounds on the dipole moment give an upper bound of [math]\displaystyle{ d_N \lt 10^{-26} \text{e}\cdot }[/math]cm,[2] which requires [math]\displaystyle{ \bar \theta \lt 10^{-10} }[/math]. The angle [math]\displaystyle{ \bar \theta }[/math] can take any value between zero and [math]\displaystyle{ 2\pi }[/math], so it taking on such a particularly small value is a fine-tuning problem called the strong CP problem.

Proposed solutions

The strong CP problem is solved automatically if one of the quarks is massless.[3] In that case one can perform a set of chiral transformations on all the massive quark fields to get rid of their complex mass phases and then perform another chiral transformation on the massless quark field to eliminate the residual θ-term without also introducing a complex mass term for that field. This then gets rid of all CP violating terms in the theory. The problem with this solution is that all quarks are known to be massive from experimental matching with lattice calculations. Even if one of the quarks was essentially massless to solve the problem, this would in itself just be another fine-tuning problem since there is nothing requiring a quark mass to take on such a small value.

The most popular solution to the problem is through the Peccei–Quinn mechanism.[4] This introduces a new global anomalous symmetry which is then spontaneously broken at low energies, giving rise to a pseudo-Goldstone boson called an axion. The axion ground state dynamically forces the theory to be CP-symmetric by setting [math]\displaystyle{ \bar \theta = 0 }[/math]. Axions are also considered viable candidates for dark matter and axion-like particles are also predicted by string theory.

Other less popular proposed solutions exist such as Nelson–Barr models.[5][6] These set [math]\displaystyle{ \bar \theta = 0 }[/math] at some high energy scale where CP-symmetry is exact but the symmetry is then spontaneously broken at low energies. The tricky part of these models is to account for why [math]\displaystyle{ \bar \theta }[/math] remains small at low energies while the CP breaking phase in the CKM matrix becomes large.

See also

References

  1. Schwartz, M.D.. "29". Quantum Field Theory and the Standard Model (9 ed.). Cambridge University Press. p. 612. ISBN 9781107034730. 
  2. Baker, C.A.; Doyle, D.D.; Geltenbort, P.; Green, K.; van der Grinten, M.G.D.; Harris, P.G.; Iaydjiev, P.; Ivanov, S.N. et al. (2006-09-27). "Improved experimental limit on the electric dipole moment of the neutron". Physical Review Letters 97 (13): 131801. doi:10.1103/PhysRevLett.97.131801. PMID 17026025. 
  3. Hook, A. (2019-07-22). "TASI Lectures on the Strong CP Problem and Axions". Proceedings of Science 333. doi:10.22323/1.333.0004. https://pos.sissa.it/333/004/pdf. Retrieved 2021-12-02. 
  4. Peccei, R. D. (2008). "The Strong CP Problem and Axions". in Kuster, M.; Raffelt, G.; Beltrán, B.. Axions: Theory, Cosmology, and Experimental Searches. Lecture Notes in Physics. 741. pp. 3–17. doi:10.1007/978-3-540-73518-2_1. ISBN 978-3-540-73517-5. 
  5. Nelson, A. (1984-03-15). "Naturally weak CP violation". Physics Letters B 136 (5,6): 387-391. doi:10.1016/0370-2693(84)92025-2. https://www.sciencedirect.com/science/article/pii/0370269384920252. Retrieved 2021-12-02. 
  6. Barr, S. M. (1984-04-18). "Solving the Strong CP Problem without the Peccei–Quinn Symmetry". Phys. Rev. Lett. 53 (4): 329-332. doi:10.1103/PhysRevLett.53.329. https://link.aps.org/doi/10.1103/PhysRevLett.53.329. Retrieved 2021-12-02.