Trigamma function
In mathematics, the trigamma function, denoted ψ1(z) or ψ(1)(z), is the second of the polygamma functions, and is defined by
- [math]\displaystyle{ \psi_1(z) = \frac{d^2}{dz^2} \ln\Gamma(z) }[/math].
It follows from this definition that
- [math]\displaystyle{ \psi_1(z) = \frac{d}{dz} \psi(z) }[/math]
where ψ(z) is the digamma function. It may also be defined as the sum of the series
- [math]\displaystyle{ \psi_1(z) = \sum_{n = 0}^{\infty}\frac{1}{(z + n)^2}, }[/math]
making it a special case of the Hurwitz zeta function
- [math]\displaystyle{ \psi_1(z) = \zeta(2,z). }[/math]
Note that the last two formulas are valid when 1 − z is not a natural number.
Calculation
A double integral representation, as an alternative to the ones given above, may be derived from the series representation:
- [math]\displaystyle{ \psi_1(z) = \int_0^1\!\!\int_0^x\frac{x^{z-1}}{y(1 - x)}\,dy\,dx }[/math]
using the formula for the sum of a geometric series. Integration over y yields:
- [math]\displaystyle{ \psi_1(z) = -\int_0^1\frac{x^{z-1}\ln{x}}{1-x}\,dx }[/math]
An asymptotic expansion as a Laurent series is
- [math]\displaystyle{ \psi_1(z) = \frac{1}{z} + \frac{1}{2z^2} + \sum_{k=1}^{\infty}\frac{B_{2k}}{z^{2k+1}} = \sum_{k=0}^{\infty}\frac{B_k}{z^{k+1}} }[/math]
if we have chosen B1 = 1/2, i.e. the Bernoulli numbers of the second kind.
Recurrence and reflection formulae
The trigamma function satisfies the recurrence relation
- [math]\displaystyle{ \psi_1(z + 1) = \psi_1(z) - \frac{1}{z^2} }[/math]
and the reflection formula
- [math]\displaystyle{ \psi_1(1 - z) + \psi_1(z) = \frac{\pi^2}{\sin^2 \pi z} \, }[/math]
which immediately gives the value for z = 1/2: [math]\displaystyle{ \psi_1(\tfrac{1}{2})=\tfrac{\pi^2}{2} }[/math].
Special values
At positive half integer values we have that
- [math]\displaystyle{ \psi_1\left(n+\frac12\right)=\frac{\pi^2}{2}-4\sum_{k=1}^n\frac{1}{(2k-1)^2}. }[/math]
Moreover, the trigamma function has the following special values:
- [math]\displaystyle{ \begin{align} \psi_1\left(\tfrac14\right) &= \pi^2 + 8G \quad & \psi_1\left(\tfrac12\right) &= \frac{\pi^2}{2} & \psi_1(1) &= \frac{\pi^2}{6} \\[6px] \psi_1\left(\tfrac32\right) &= \frac{\pi^2}{2} - 4 & \psi_1(2) &= \frac{\pi^2}{6} - 1 \quad \end{align} }[/math]
where G represents Catalan's constant.
There are no roots on the real axis of ψ1, but there exist infinitely many pairs of roots zn, zn for Re z < 0. Each such pair of roots approaches Re zn = −n + 1/2 quickly and their imaginary part increases slowly logarithmic with n. For example, z1 = −0.4121345... + 0.5978119...i and z2 = −1.4455692... + 0.6992608...i are the first two roots with Im(z) > 0.
Relation to the Clausen function
The digamma function at rational arguments can be expressed in terms of trigonometric functions and logarithm by the digamma theorem. A similar result holds for the trigamma function but the circular functions are replaced by Clausen's function. Namely,[1]
- [math]\displaystyle{ \psi_1\left(\frac{p}{q}\right)=\frac{\pi^2}{2\sin^2(\pi p/q)}+2q\sum_{m=1}^{(q-1)/2}\sin\left(\frac{2\pi mp}{q}\right)\textrm{Cl}_2\left(\frac{2\pi m}{q}\right). }[/math]
Computation and approximation
An easy method to approximate the trigamma function is to take the derivative of the asymptotic expansion of the digamma function.
- [math]\displaystyle{ \psi_1(x) \approx \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} + \frac{5}{66x^{11}} - \frac{691}{2730x^{13}} + \frac{7}{6x^{15}} }[/math]
Appearance
The trigamma function appears in this sum formula:[2]
- [math]\displaystyle{ \sum_{n=1}^\infty\frac{n^2-\frac12}{\left(n^2+\frac12\right)^2}\left(\psi_1\bigg(n-\frac{i}{\sqrt{2}}\bigg)+\psi_1\bigg(n+\frac{i}{\sqrt{2}}\bigg)\right)= -1+\frac{\sqrt{2}}{4}\pi\coth\frac{\pi}{\sqrt{2}}-\frac{3\pi^2}{4\sinh^2\frac{\pi}{\sqrt{2}}}+\frac{\pi^4}{12\sinh^4\frac{\pi}{\sqrt{2}}}\left(5+\cosh\pi\sqrt{2}\right). }[/math]
See also
Notes
- ↑ Lewin, L., ed (1991). Structural properties of polylogarithms. American Mathematical Society. ISBN 978-0821816349.
- ↑ Mező, István (2013). "Some infinite sums arising from the Weierstrass Product Theorem". Applied Mathematics and Computation 219 (18): 9838–9846. doi:10.1016/j.amc.2013.03.122.
References
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. ISBN:0-486-61272-4. See section §6.4
- Eric W. Weisstein. Trigamma Function -- from MathWorld--A Wolfram Web Resource
Original source: https://en.wikipedia.org/wiki/Trigamma function.
Read more |