Porter's constant

From HandWiki

In mathematics, Porter's constant C arises in the study of the efficiency of the Euclidean algorithm.[1][2] It is named after J. W. Porter of University College, Cardiff.

Euclid's algorithm finds the greatest common divisor of two positive integers m and n. Hans Heilbronn proved that the average number of iterations of Euclid's algorithm, for fixed n and averaged over all choices of relatively prime integers m < n, is

[math]\displaystyle{ \frac{12\ln 2}{\pi^2}\ln n+o(\ln n). }[/math]

Porter showed that the error term in this estimate is a constant, plus a polynomially-small correction, and Donald Knuth evaluated this constant to high accuracy. It is:

[math]\displaystyle{ \begin{align} C & = {{6 \ln2}\over{\pi^2}} \left[ 3 \ln 2 +4 \gamma - {{24}\over{\pi^2}}\zeta'(2)-2\right] -{{1}\over{2}} \\[6pt] & = {{{6 \ln2}((48 \ln A )- (\ln 2 )-(4 \ln \pi) -2)}\over{\pi^2}} - {{1}\over{2}} \\[6pt] & = 1.46707 80794 \ldots \end{align} }[/math]

where

[math]\displaystyle{ \gamma }[/math] is the Euler–Mascheroni constant
[math]\displaystyle{ \zeta }[/math] is the Riemann zeta function
[math]\displaystyle{ A }[/math] is the Glaisher–Kinkelin constant

(sequence A086237 in the OEIS)

[math]\displaystyle{ -\zeta^{\prime}(2)={{\pi^2} \over 6} \left[ 12 \ln A - \gamma-\ln(2\pi)\right]=\sum_{k=2}^\infty {{\ln k}\over{k^2}} }[/math]
[math]\displaystyle{ }[/math]

See also

References

  1. "Evaluation of Porter's constant", Computers & Mathematics with Applications 2 (2): 137–139, 1976, doi:10.1016/0898-1221(76)90025-0 
  2. Porter, J. W. (1975), "On a theorem of Heilbronn", Mathematika 22 (1): 20–28, doi:10.1112/S0025579300004459 .