Positive and negative sets
In measure theory, given a measurable space (X,Σ) and a signed measure μ on it, a set A ∈ Σ is called a positive set for μ if every Σ-measurable subset of A has nonnegative measure; that is, for every E ⊆ A that satisfies E ∈ Σ, one has μ(E) ≥ 0.
Similarly, a set A ∈ Σ is called a negative set for μ if for every subset E of A satisfying E ∈ Σ, one has μ(E) ≤ 0.
Intuitively, a measurable set A is positive (resp. negative) for μ if μ is nonnegative (resp. nonpositive) everywhere on A. Of course, if μ is a nonnegative measure, every element of Σ is a positive set for μ.
In the light of Radon–Nikodym theorem, if ν is a σ-finite positive measure such that |μ| ≪ ν, a set A is a positive set for μ if and only if the Radon–Nikodym derivative dμ/dν is nonnegative ν-almost everywhere on A. Similarly, a negative set is a set where dμ/dν ≤ 0 ν-almost everywhere.
Properties
It follows from the definition that every measurable subset of a positive or negative set is also positive or negative. Also, the union of a sequence of positive or negative sets is also positive or negative; more formally, if (An)n is a sequence of positive sets, then
- [math]\displaystyle{ \bigcup_{n=1}^\infty A_n }[/math]
is also a positive set; the same is true if the word "positive" is replaced by "negative".
A set which is both positive and negative is a μ-null set, for if E is a measurable subset of a positive and negative set A, then both μ(E) ≥ 0 and μ(E) ≤ 0 must hold, and therefore, μ(E) = 0.
Hahn decomposition
The Hahn decomposition theorem states that for every measurable space (X,Σ) with a signed measure μ, there is a partition of X into a positive and a negative set; such a partition (P,N) is unique up to μ-null sets, and is called a Hahn decomposition of the signed measure μ.
Given a Hahn decomposition (P,N) of X, it is easy to show that A ⊆ X is a positive set if and only if A differs from a subset of P by a μ-null set; equivalently, if A−P is μ-null. The same is true for negative sets, if N is used instead of P.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Positive and negative sets.
Read more |