Prime reciprocal magic square
A prime reciprocal magic square is a magic square using the decimal digits of the reciprocal of a prime number.
Formulation
Basics
In decimal, unit fractions [math]\displaystyle{ \tfrac {1}{2} }[/math] and [math]\displaystyle{ \tfrac {1}{5} }[/math] have no repeating decimal, while [math]\displaystyle{ \tfrac {1}{3} }[/math] repeats [math]\displaystyle{ 0.3333\dots }[/math] indefinitely. The remainder of [math]\displaystyle{ \tfrac {1}{7} }[/math], on the other hand, repeats over six digits as, [math]\displaystyle{ 0.\bold{1}42857\bold{1}42857\bold{1}\dots }[/math]
Consequently, multiples of one-seventh exhibit cyclic permutations of these six digits:[1]
[math]\displaystyle{ \begin{align} 1/7 & = 0.1 4 2 8 5 7\dots \\ 2/7 & = 0.2 8 5 7 1 4\dots \\ 3/7 & = 0.4 2 8 5 7 1\dots \\ 4/7 & = 0.5 7 1 4 2 8\dots \\ 5/7 & = 0.7 1 4 2 8 5\dots \\ 6/7 & = 0.8 5 7 1 4 2\dots \end{align} }[/math]
If the digits are laid out as a square, each row and column sums to [math]\displaystyle{ 1 + 4 + 2 + 8 + 5 + 7 = 27. }[/math] This yields the smallest base-10 non-normal, prime reciprocal magic square
[math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 5 }[/math] | [math]\displaystyle{ 7 }[/math] |
[math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 5 }[/math] | [math]\displaystyle{ 7 }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 4 }[/math] |
[math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 5 }[/math] | [math]\displaystyle{ 7 }[/math] | [math]\displaystyle{ 1 }[/math] |
[math]\displaystyle{ 5 }[/math] | [math]\displaystyle{ 7 }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 8 }[/math] |
[math]\displaystyle{ 7 }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 5 }[/math] |
[math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 5 }[/math] | [math]\displaystyle{ 7 }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 2 }[/math] |
In contrast with its rows and columns, the diagonals of this square do not sum to 27; however, their mean is 27, as one diagonal adds to 23 while the other adds to 31.
All prime reciprocals in any base with a [math]\displaystyle{ p - 1 }[/math] period will generate magic squares where all rows and columns produce a magic constant, and only a select few will be full, such that their diagonals, rows and columns collectively yield equal sums.
Decimal expansions
In a full, or otherwise prime reciprocal magic square with [math]\displaystyle{ p - 1 }[/math] period, the even number of [math]\displaystyle{ k }[/math]−th rows in the square are arranged by multiples of [math]\displaystyle{ 1/p }[/math] — not necessarily successively — where a magic constant can be obtained.
For instance, an even repeating cycle from an odd, prime reciprocal of [math]\displaystyle{ p }[/math] that is divided into [math]\displaystyle{ n }[/math]−digit strings creates pairs of complementary sequences of digits that yield strings of nines (9) when added together:
[math]\displaystyle{ \begin{align} 1/7 = & \text { } 0.142\;857\dots \\ + & \text { } 0.857\;142\ldots = 6/7\\ & ------------ \\ & \text { } 0.999\;999\ldots \\ \\ 1/13 = & \text { } 0.076\;923\;076\;923\dots \\ + & \text { } 0.923\;076\;923\;076\ldots = 12/13\\ & ------------ \\ & \text { } 0.999\;999\;999\;999\ldots \\ \\ 1/19 = & \text { } 0.052631578\;947368421\dots \\ + & \text { } 0.947368421\;052631578\ldots = 18/19\\ & ------------ \\ & \text { } 0.999999999\;999999999\dots \\ \end{align} }[/math]
This is a result of Midy's theorem.[2][3] These complementary sequences are generated between multiples of prime reciprocals that add to 1.
More specifically, a factor [math]\displaystyle{ n }[/math] in the numerator of the reciprocal of a prime number [math]\displaystyle{ p }[/math] will shift the decimal places of its decimal expansion accordingly,
[math]\displaystyle{ \begin{align} 1/23 & = 0.04347826\;08695652\;173913\ldots \\ 2/23 & = 0.08695652\;17391304\;347826\ldots \\ 4/23 & = 0.17391304\;34782608\;695652\ldots \\ 8/23 & = 0.34782608\;69565217\;391304\ldots \\ 16/23 & = 0.69565217\;39130434\;782608\ldots \\ \end{align} }[/math]
In this case, a factor of 2 moves the repeating decimal of [math]\displaystyle{ \tfrac {1}{23} }[/math] by eight places.
A uniform solution of a prime reciprocal magic square, whether full or not, will hold rows with successive multiples of [math]\displaystyle{ 1/p }[/math]. Other magic squares can be constructed whose rows do not represent consecutive multiples of [math]\displaystyle{ 1/p }[/math], which nonetheless generate a magic sum.
Magic constant
Magic squares based on reciprocals of primes [math]\displaystyle{ p }[/math] in bases [math]\displaystyle{ b }[/math] with periods [math]\displaystyle{ p - 1 }[/math] have magic sums equal to,[citation needed]
[math]\displaystyle{ M = (b-1) \times \frac {p-1}{2}. }[/math]
The table below lists some prime numbers that generate prime-reciprocal magic squares in given bases.[citation needed]
Prime | Base | Magic sum |
---|---|---|
19 | 10 | 81 |
53 | 12 | 286 |
59 | 2 | 29 |
67 | 2 | 33 |
83 | 2 | 41 |
89 | 19 | 792 |
211 | 2 | 105 |
223 | 3 | 222 |
307 | 5 | 612 |
383 | 10 | 1,719 |
397 | 5 | 792 |
487 | 6 | 1,215 |
593 | 3 | 592 |
631 | 87 | 27,090 |
787 | 13 | 4,716 |
811 | 3 | 810 |
1,033 | 11 | 5,160 |
1,307 | 5 | 2,612 |
1,499 | 11 | 7,490 |
1,877 | 19 | 16,884 |
2,011 | 26 | 25,125 |
2,027 | 2 | 1,013 |
Full magic squares
The [math]\displaystyle{ \bold{\tfrac {1}{19}} }[/math] magic square with maximum period 18 contains a row-and-column total of 81, that is also obtained by both diagonals. This makes it the first full, non-normal base-10 prime reciprocal magic square whose multiples fit inside respective [math]\displaystyle{ k }[/math]−th rows:[4][5]
[math]\displaystyle{ \begin{align} 1/19 & = 0. {\color{red}0} \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } {\color{red}1} \dots \\ 2/19 & = 0.1 \text { } {\color{red}0} \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } {\color{red}4} \text { } 2 \dots \\ 3/19 & = 0.1 \text { } 5 \text { } {\color{red}7} \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } {\color{red}2} \text { } 6 \text { } 3 \dots \\ 4/19 & = 0.2 \text { } 1 \text { } 0 \text { } {\color{red}5} \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } {\color{red}3} \text { } 6 \text { } 8 \text { } 4 \dots \\ 5/19 & = 0.2 \text { } 6 \text { } 3 \text { } 1 \text { } {\color{red}5} \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } {\color{red}4} \text { } 2 \text { } 1 \text { } 0 \text { } 5 \dots \\ 6/19 & = 0.3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } {\color{red}9} \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } {\color{red}2} \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \dots \\ 7/19 & = 0.3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } {\color{red}0} \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } {\color{red}1} \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \dots \\ 8/19 & = 0.4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } {\color{red}3} \text { } 1 \text { } 5 \text { } {\color{red}7} \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \dots \\ 9/19 & = 0.4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } {\color{red}0} \text { } {\color{red}5} \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \dots \\ 10/19 & = 0.5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } {\color{red}9} \text { } {\color{red}4} \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \dots \\ 11/19 & = 0.5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \text { } {\color{red}6} \text { } 8 \text { } 4 \text { } {\color{red}2} \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \dots \\ 12/19 & = 0.6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } {\color{red}9} \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } {\color{red}8} \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \dots \\ 13/19 & = 0.6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } {\color{red}0} \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } {\color{red}7} \text { } 8 \text { } 9 \text { } 4 \text { } 7 \text { } 3 \dots \\ 14/19 & = 0.7 \text { } 3 \text { } 6 \text { } 8 \text { } {\color{red}4} \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } {\color{red}5} \text { } 7 \text { } 8 \text { } 9 \text { } 4 \dots \\ 15/19 & = 0.7 \text { } 8 \text { } 9 \text { } {\color{red}4} \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } {\color{red}6} \text { } 3 \text { } 1 \text { } 5 \dots \\ 16/19 & = 0.8 \text { } 4 \text { } {\color{red}2} \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } 8 \text { } 9 \text { } 4 \text { } {\color{red}7} \text { } 3 \text { } 6 \dots \\ 17/19 & = 0.8 \text { } {\color{red}9} \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } {\color{red}5} \text { } 7 \dots \\ 18/19 & = 0.{\color{red}9} \text { } 4 \text { } 7 \text { } 3 \text { } 6 \text { } 8 \text { } 4 \text { } 2 \text { } 1 \text { } 0 \text { } 5 \text { } 2 \text { } 6 \text { } 3 \text { } 1 \text { } 5 \text { } 7 \text { } {\color{red}8} \dots \\ \end{align} }[/math]
The first few prime numbers in decimal whose reciprocals can be used to produce a non-normal, full prime reciprocal magic square of this type are[6]
- {19, 383, 32327, 34061, 45341, 61967, 65699, 117541, 158771, 405817, ...} (sequence A072359 in the OEIS).
The smallest prime number to yield such magic square in binary is 59 (1110112), while in ternary it is 223 (220213); these are listed at A096339, and A096660.
Variations
A [math]\displaystyle{ \tfrac {1}{17} }[/math] prime reciprocal magic square with maximum period of 16 and magic constant of 72 can be constructed where its rows represent non-consecutive multiples of one-seventeenth:[7][8]
[math]\displaystyle{ \begin{align} 1/17 & = 0.{\color{blue}0} \text { } 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; 9 \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; {\color{blue}7} \dots \\ 5/17 & = 0.2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; 0 \; 5 \; 8 \; 8 \; 2 \; {\color{blue}3} \; 5 \dots \\ 8/17 & = 0.4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; 9 \; 4 \; 1 \; {\color{blue}1} \; 7 \; 6 \dots \\ 6/17 & = 0.3 \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; 0 \; {\color{blue}5} \; 8 \; 8 \; 2 \dots \\ 13/17 & = 0.7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; {\color{blue}2} \; 9 \; 4 \; 1 \; 1 \dots \\ 14/17 & = 0.8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \; {\color{blue}6} \; 4 \; 7 \; 0 \; 5 \; 8 \dots \\ 2/17 & = 0.1 \; 1 \; 7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; {\color{blue}8} \; 2 \; 3 \; 5 \; 2 \; 9 \; 4 \dots \\ 10/17 & = 0.5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \; {\color{blue}4} \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; 0 \dots \\ 16/17 & = 0.9 \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; {\color{blue}7} \; {\color{blue}0} \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \dots \\ 12/17 & = 0.7 \; 0 \; 5 \; 8 \; 8 \; 2 \; {\color{blue}3} \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \dots \\ 9/17 & = 0.5 \; 2 \; 9 \; 4 \; 1 \; {\color{blue}1} \; 7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; 8 \; 2 \; 3 \dots \\ 11/17 & = 0.6 \; 4 \; 7 \; 0 \; {\color{blue}5} \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \; 1 \; 7 \dots \\ 4/17 & = 0.2 \; 3 \; 5 \; {\color{blue}2} \; 9 \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \; 8 \; 8 \dots \\ 3/17 & = 0.1 \; 7 \; {\color{blue}6} \; 4 \; 7 \; 0 \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \; 4 \; 1 \dots \\ 15/17 & = 0.8 \; {\color{blue}8} \; 2 \; 3 \; 5 \; 2 \; 9 \; 4 \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; {\color{blue}0} \; 5 \dots \\ 7/17 & = 0.{\color{blue}4} \; 1 \; 1 \; 7 \; 6 \; 4 \; 7 \; 0 \; 5 \; 8 \; 8 \; 2 \; 3 \; 5 \; 2 \; {\color{blue}9} \dots \\ \end{align} }[/math]
As such, this full magic square is the first of its kind in decimal that does not admit a uniform solution where consecutive multiples of [math]\displaystyle{ 1/p }[/math] fit in respective [math]\displaystyle{ k }[/math]−th rows.
See also
References
- ↑ Wells, D. (1987). The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin Books. pp. 171–174. ISBN 0-14-008029-5. OCLC 39262447. https://archive.org/details/penguindictionar0000well_f3y1/mode/2up.
- ↑ Rademacher, Hans; Toeplitz, Otto (1957). The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. (2nd ed.). Princeton, NJ: Princeton University Press. pp. 158-160. ISBN 9780486262420. OCLC 20827693. https://archive.org/details/enjoymentofmathe0000rade/page/160/mode/2up.
- ↑ Leavitt, William G. (1967). "A Theorem on Repeating Decimals". The American Mathematical Monthly (Washington, D.C.: Mathematical Association of America) 74 (6): 669–673. doi:10.2307/2314251. http://digitalcommons.unl.edu/mathfacpub/48/.
- ↑ Andrews, William Symes (1917). Magic Squares and Cubes. Chicago, IL: Open Court Publishing Company. pp. 176, 177. ISBN 9780486206585. OCLC 1136401. http://djm.cc/library/Magic_Squares_Cubes_Andrews_edited.pdf.
- ↑ Sloane, N. J. A., ed. "Sequence A021023 (Decimal expansion of 1/19.)". OEIS Foundation. https://oeis.org/A021023. Retrieved 2023-11-21.
- ↑ Singleton, Colin R.J., ed (1999). "Solutions to Problems and Conjectures". Journal of Recreational Mathematics (Amityville, NY: Baywood Publishing & Co.) 30 (2): 158-160. https://www.tib.eu/en/search/id/olc:OLC1606837575/Solutions-to-Problems-and-Conjectures?cHash=e69a0e2935ea6071c21e685db86a7d91.
- "Fourteen primes less than 1000000 possess this required property [in decimal]".
- Solution to problem 2420, "Only 19?" by M. J. Zerger.
- "Fourteen primes less than 1000000 possess this required property [in decimal]".
- ↑ Subramani, K. (2020). "On two interesting properties of primes, p, with reciprocals in base 10 having maximum period p – 1.". J. of Math. Sci. & Comp. Math. (Auburn, WA: S.M.A.R.T.) 1 (2): 198-200. doi:10.15864/jmscm.1204. https://jmscm.smartsociety.org/volume1_issue2/Paper4.pdf.
- ↑ Sloane, N. J. A., ed. "Sequence A007450 (Decimal expansion of 1/17.)". OEIS Foundation. https://oeis.org/A007450. Retrieved 2023-11-24.
Original source: https://en.wikipedia.org/wiki/Prime reciprocal magic square.
Read more |