q-derivative

From HandWiki
Short description: Q-analog of the ordinary derivative


In mathematics, in the area of combinatorics and quantum calculus, the q-derivative, or Jackson derivative, is a q-analog of the ordinary derivative, introduced by Frank Hilton Jackson. It is the inverse of Jackson's q-integration. For other forms of q-derivative, see (Chung Chung).

Definition

The q-derivative of a function f(x) is defined as[1][2][3]

(ddx)qf(x)=f(qx)f(x)qxx.

It is also often written as Dqf(x). The q-derivative is also known as the Jackson derivative.

Formally, in terms of Lagrange's shift operator in logarithmic variables, it amounts to the operator

Dq=1xqdd(lnx)1q1,

which goes to the plain derivative, Dqddx as q1.

It is manifestly linear,

Dq(f(x)+g(x))=Dqf(x)+Dqg(x).

It has a product rule analogous to the ordinary derivative product rule, with two equivalent forms

Dq(f(x)g(x))=g(x)Dqf(x)+f(qx)Dqg(x)=g(qx)Dqf(x)+f(x)Dqg(x).

Similarly, it satisfies a quotient rule,

Dq(f(x)/g(x))=g(x)Dqf(x)f(x)Dqg(x)g(qx)g(x),g(x)g(qx)0.

There is also a rule similar to the chain rule for ordinary derivatives. Let g(x)=cxk. Then

Dqf(g(x))=Dqk(f)(g(x))Dq(g)(x).

The eigenfunction of the q-derivative is the q-exponential eq(x).

Relationship to ordinary derivatives

Q-differentiation resembles ordinary differentiation, with curious differences. For example, the q-derivative of the monomial is:[2]

(ddz)qzn=1qn1qzn1=[n]qzn1

where [n]q is the q-bracket of n. Note that limq1[n]q=n so the ordinary derivative is regained in this limit.

The n-th q-derivative of a function may be given as:[3]

(Dqnf)(0)=f(n)(0)n!(q;q)n(1q)n=f(n)(0)n![n]!q

provided that the ordinary n-th derivative of f exists at x = 0. Here, (q;q)n is the q-Pochhammer symbol, and [n]!q is the q-factorial. If f(x) is analytic we can apply the Taylor formula to the definition of Dq(f(x)) to get

Dq(f(x))=k=0(q1)k(k+1)!xkf(k+1)(x).

A q-analog of the Taylor expansion of a function about zero follows:[2]

f(z)=n=0f(n)(0)znn!=n=0(Dqnf)(0)zn[n]!q.

Higher order q-derivatives

The following representation for higher order q-derivatives is known:[4][5]

Dqnf(x)=1(1q)nxnk=0n(1)k(nk)qq(k2)(n1)kf(qkx).

(nk)q is the q-binomial coefficient. By changing the order of summation as r=nk, we obtain the next formula:[4][6]

Dqnf(x)=(1)nq(n2)(1q)nxnr=0n(1)r(nr)qq(r2)f(qnrx).

Higher order q-derivatives are used to q-Taylor formula and the q-Rodrigues' formula (the formula used to construct q-orthogonal polynomials[4]).

Generalizations

Post Quantum Calculus

Post quantum calculus is a generalization of the theory of quantum calculus, and it uses the following operator:[7][8]

Dp,qf(x):=f(px)f(qx)(pq)x,x0.

Hahn difference

Wolfgang Hahn introduced the following operator (Hahn difference):[9][10]

Dq,ωf(x):=f(qx+ω)f(x)(q1)x+ω,0<q<1,ω>0.

When ω0 this operator reduces to q-derivative, and when q1 it reduces to forward difference. This is a successful tool for constructing families of orthogonal polynomials and investigating some approximation problems.[11][12][13]

β-derivative

β-derivative is an operator defined as follows:[14][15]

Dβf(t):=f(β(t))f(t)β(t)t,βt,β:II.

In the definition, I is a given interval, and β(t) is any continuous function that strictly monotonically increases (i.e. t>sβ(t)>β(s)). When β(t)=qt then this operator is q-derivative, and when β(t)=qt+ω this operator is Hahn difference.

Applications

The q-calculus has been used in machine learning for designing stochastic activation functions.[16]

See also

Citations

  1. Jackson 1908, pp. 253–281.
  2. 2.0 2.1 2.2 Kac & Pokman Cheung 2002.
  3. 3.0 3.1 Ernst 2012.
  4. 4.0 4.1 4.2 Koepf 2014.
  5. Koepf, Rajković & Marinković 2007, pp. 621–638.
  6. Annaby & Mansour 2008, pp. 472–483.
  7. Gupta V., Rassias T.M., Agrawal P.N., Acu A.M. (2018) Basics of Post-Quantum Calculus. In: Recent Advances in Constructive Approximation Theory. SpringerOptimization and Its Applications, vol 138. Springer.
  8. Duran 2016.
  9. Hahn, W. (1949). Math. Nachr. 2: 4-34.
  10. Hahn, W. (1983) Monatshefte Math. 95: 19-24.
  11. Foupouagnigni 1998.
  12. Kwon, K.; Lee, D.; Park, S.; Yoo, B.: Kyungpook Math. J. 38, 259-281 (1998).
  13. Alvarez-Nodarse, R.: J. Comput. Appl. Math. 196, 320-337 (2006).
  14. Auch, T. (2013): Development and Application of Difference and Fractional Calculus on Discrete Time Scales. PhD thesis, University of Nebraska-Lincoln.
  15. Hamza et al. 2015, p. 182.
  16. Nielsen & Sun 2021, pp. 2782–2789.

Bibliography

  • Annaby, M. H.; Mansour, Z. S. (2008). "q-Taylor and interpolation-difference operators". Journal of Mathematical Analysis and Applications 344 (1): 472–483. doi:10.1016/j.jmaa.2008.02.033. 
  • Chung, K. S.; Chung, W. S.; Nam, S. T.; Kang, H. J. (1994). "New q-derivative and q-logarithm". International Journal of Theoretical Physics 33 (10): 2019–2029. doi:10.1007/BF00675167. Bibcode1994IJTP...33.2019C. 
  • Duran, U. (2016). Post Quantum Calculus (M.Sc. thesis). Department of Mathematics, University of Gaziantep Graduate School of Natural & Applied Sciences. Retrieved 9 March 2022 – via ResearchGate.
  • Ernst, T. (2012). A comprehensive treatment of q-calculus. Springer Science & Business Media. ISBN 978-303480430-1. 
  • Ernst, Thomas (2001). "The History of q-Calculus and a new method". http://www.math.uu.se/research/pub/Ernst4.pdf. 
  • Exton, H. (1983). q-Hypergeometric Functions and Applications. New York: Halstead Press. ISBN 978-047027453-8. 
  • Foupouagnigni, M. (1998). Laguerre-Hahn orthogonal polynomials with respect to the Hahn operator: fourth-order difference equation for the rth associated and the Laguerre-Freud equations for the recurrence coefficients (Ph.D. thesis). Université Nationale du Bénin.
  • Hamza, A.; Sarhan, A.; Shehata, E.; Aldwoah, K. (2015). "A General Quantum Difference Calculus". Advances in Difference Equations 1: 182. doi:10.1186/s13662-015-0518-3. 
  • Jackson, F. H. (1908). "On q-functions and a certain difference operator". Trans. R. Soc. Edinb. 46 (2): 253–281. doi:10.1017/S0080456800002751. 
  • Kac, Victor; ((Pokman Cheung)) (2002). Quantum Calculus. Springer-Verlag. ISBN 0-387-95341-8. 
  • Koekoek, J.; Koekoek, R. (1999). "A note on the q-derivative operator". J. Math. Anal. Appl. 176 (2): 627–634. doi:10.1006/jmaa.1993.1237. 
  • Koepf, W.; Rajković, P. M.; Marinković, S. D. (July 2007). "Properties of q-holonomic functions". Journal of Difference Equations and Applications 13 (7): 621–638. doi:10.1080/10236190701264925. 
  • Koepf, Wolfram (2014). Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities. Springer. ISBN 978-1-4471-6464-7. 
  • Nielsen, Frank; Sun, Ke (2021). "q-Neurons: Neuron Activations Based on Stochastic Jackson's Derivative Operators". IEEE Trans. Neural Networks Learn. Syst 32 (6): 2782–2789. doi:10.1109/TNNLS.2020.3005167. PMID 32886614. https://ieeexplore.ieee.org/document/9139267.