Semiabelian group
Semiabelian groups is a class of groups first introduced by (Thompson 1984) and named by (Matzat 1987).[1] It appears in Galois theory, in the study of the inverse Galois problem or the embedding problem which is a generalization of the former.
Definition
Definition:[2][3][4][5] A finite group G is called semiabelian if and only if there exists a sequence[math]\displaystyle{ G_0 = \{1\}, G_1, \dots , G_n = G }[/math]
such that [math]\displaystyle{ G_i }[/math] is a homomorphic image of a semidirect product [math]\displaystyle{ A_i\rtimes G_{i-1} }[/math] with a finite abelian group [math]\displaystyle{ A_{i} }[/math] ([math]\displaystyle{ i = 1, \dots , n }[/math].).
The family [math]\displaystyle{ \mathcal{S} }[/math] of finite semiabelian groups is the minimal family which contains the trivial group and is closed under the following operations:[6][7]
- If [math]\displaystyle{ G \in \mathcal{S} }[/math] acts on a finite abelian group [math]\displaystyle{ A }[/math], then [math]\displaystyle{ A\rtimes G\in \mathcal{S} }[/math];
- If [math]\displaystyle{ G\in \mathcal{S} }[/math] and [math]\displaystyle{ N\triangleleft G }[/math] is a normal subgroup, then [math]\displaystyle{ G/N\in \mathcal{S} }[/math].
The class of finite groups G with a regular realizations over [math]\displaystyle{ \mathbb{Q} }[/math] is closed under taking semidirect products with abelian kernels, and it is also closed under quotients. The class [math]\displaystyle{ \mathcal{S} }[/math] is the smallest class of finite groups that have both of these closure properties as mentioned above.[8][9]
Example
- Abelian groups, dihedral groups, and all p-groups of order less than [math]\displaystyle{ 64 }[/math] are semiabelian. [10]
- The following are equivalent for a non-trivial finite group G (Dentzer 1995) :[11][12]
- (i) G is semiabelian.
- (ii) G posses an abelian [math]\displaystyle{ A\triangleleft G }[/math] and a some proper semiabelian subgroup U with [math]\displaystyle{ G = AU }[/math].
- Therefore G is an epimorphism of a split group extension with abelian kernel.[13]
- Finite semiabelian groups possess G-realizations[14][15] over function fields [math]\displaystyle{ k(t) }[/math] in one variable for any field [math]\displaystyle{ k }[/math] and therefore are Galois groups over every Hilbertian field.[16]
See also
References
Citations
Bibliography
- Blum-Smith, Benjamin (2014). "Semiabelian Groups and the Inverse Galois Problem". Courant Institute of Mathematical Sciences. https://math.nyu.edu/dynamic/calendars/seminars/algebraic-geometry-seminar/790/.
- De Witt, Meghan (2014). "Minimal ramification and the inverse Galois problem over the rational function field Fp(t)". Journal of Number Theory 143: 62–81. doi:10.1016/j.jnt.2014.03.017.
- Dentzer, Ralf (1995). "On geometric embedding problems and semiabelian groups". Manuscripta Mathematica 86: 199–216. doi:10.1007/BF02567989. http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002236435.
- Kisilevsky, Hershy; Neftin, Danny; Sonn, Jack (2010). "On the minimal ramification problem for semiabelian groups". Algebra & Number Theory 4 (8): 1077–1090. doi:10.2140/ant.2010.4.1077.
- Kisilevsky, Hershy; Sonn, Jack (2010). "On the minimal ramification problem for ℓ-groups". Compositio Mathematica 146 (3): 599–606. doi:10.1112/S0010437X10004719.
- Legrand, François (2022). "On finite embedding problems with abelian kernels". Journal of Algebra 595: 633–659. doi:10.1016/j.jalgebra.2021.12.026.
- Matzat, Bernd Heinrich (1987). "Einbettungsprobleme Über Hilbertkörpern". Konstruktive Galoistheorie. Lecture Notes in Mathematics. 1284. pp. 215–268. doi:10.1007/BFb0098329. ISBN 978-3-540-18444-7. https://books.google.com/books?id=awB8CwAAQBAJ&pg=PA215.
- Malle, Gunter; Matzat, B. Heinrich (1999). "Embedding Problems". Inverse Galois Theory. Springer Monographs in Mathematics. pp. 263–360. doi:10.1007/978-3-662-12123-8_4. ISBN 978-3-662-12123-8. https://books.google.com/books?id=kovnCAAAQBAJ&pg=PA300.
- Matzat, B. H. (1995). "Parametric solutions of embedding problems". Recent Developments in the Inverse Galois Problem. Contemporary Mathematics. 186. pp. 33–50. doi:10.1090/conm/186/02174. ISBN 9780821802991. https://books.google.com/books?id=Y8caCAAAQBAJ&pg=PA33.
- Neftin, Danny (2011). "On semiabelian p-groups". Journal of Algebra 344: 60–69. doi:10.1016/j.jalgebra.2011.07.016.
- Neftin, Danny (2009). "On semiabelian p-groups". arXiv:0908.1472v2 [math.GR].
- Stoll, Michael (1995). "Construction of semiabelian Galois extensions". Glasgow Mathematical Journal 37: 99–104. doi:10.1017/S0017089500030433.
- Schmid, Peter (2018). "Realizing 2-groups as Galois groups following Shafarevich and Serre". Algebra & Number Theory 12 (10): 2387–2401. doi:10.2140/ant.2018.12.2387. https://projecteuclid.org/journals/algebra-and-number-theory/volume-12/issue-10/Realizing-2-groups-as-Galois-groups-following-Shafarevich-and-Serre/10.2140/ant.2018.12.2387.pdf.
- Thompson, John G (1984). "Some finite groups which appear as gal L/K, where K ⊆ Q(μn)". Journal of Algebra 89 (2): 437–499. doi:10.1016/0021-8693(84)90228-x. ISSN 0021-8693. http://dx.doi.org/10.1016/0021-8693(84)90228-x.
Further reading
- Matzat, B. Heinrich (1991). "Der Kenntnisstand in der konstruktiven Galoisschen Theorie". Representation Theory of Finite Groups and Finite-Dimensional Algebras. pp. 65–98. doi:10.1007/978-3-0348-8658-1_4. ISBN 978-3-0348-9720-4. https://books.google.com/books?id=LyXyBwAAQBAJ&pg=PA65.
- Saltman, David J. (1982). "Generic Galois extensions and problems in field theory". Advances in Mathematics 43 (3): 250–283. doi:10.1016/0001-8708(82)90036-6.
External links
- "Inverse Galois Problem (Lecture 3) in PCMI 2021 Graduate Summer School Program - Number Theory Informed by Computation - July 26-30, 2021". https://people.maths.bris.ac.uk/~matyd/InvGal/.
Original source: https://en.wikipedia.org/wiki/Semiabelian group.
Read more |