Separating lattice homomorphism
From HandWiki
Let [math]\displaystyle{ \mathbb{L} }[/math] and [math]\displaystyle{ \mathbb{L}' }[/math] be two lattices with 0 and 1. A homomorphism from [math]\displaystyle{ \mathbb{L} }[/math] to [math]\displaystyle{ \mathbb{L}' }[/math] is called 0,1-separating iff [math]\displaystyle{ f^{-1}\{f(0)\}=\{0\} }[/math] ([math]\displaystyle{ f }[/math] separates 0) and [math]\displaystyle{ f^{-1}\{f(1)\}=\{1\} }[/math] ([math]\displaystyle{ f }[/math] separates 1).
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |