Software:Scalasca

From HandWiki
Short description: Performance profiling software
Scalasca
Developer(s)Forschungszentrum Jülich and Technische Universität Darmstadt
Written inC, C++
Operating systemUnix-like
PlatformIA-32, x64, ARM, PowerPC
TypeProfiling
LicenseBSD
Websitewww.scalasca.org

Scalasca is a free and open-source software for measurement, analysis, and optimization of parallel program performance.[1] It is licensed under the BSD-style license.[2]

Scalasca is mostly used for profiling scientific and engineering applications using OpenMP and/or MPI. It supports runtime analysis on supercomputers.[3][4] The application being analysed needs first of all to be "instrumented": MPI usage is instrumented simply by linking the application to the measuring library, while OpenMP usage is instrumented by recompiling from source using Scalasca's modified compiler.[5][6]

References

  1. Geimer, Markus (25 April 2010). "The Scalasca performance toolset architecture". Concurrency and Computation: Practice and Experience 22 (6): 702–719. doi:10.1002/cpe.1556. http://apps.fz-juelich.de/jsc-pubsystem/pub-webpages/general/get_attach.php?pubid=142. Retrieved 29 June 2016. 
  2. "About". https://www.scalasca.org/scalasca/about/about.html. Retrieved 2020-11-14. 
  3. Knüpfer, Andreas; Rössel, Christian; Mey, Dieter an; Biersdorff, Scott; Diethelm, Kai; Eschweiler, Dominic; Geimer, Markus; Gerndt, Michael et al. (2012). "Score-P: A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir". in Brunst, Holger; Müller, Matthias S.; Nagel, Wolfgang E. et al. (in en). Tools for High Performance Computing 2011. Berlin, Heidelberg: Springer. pp. 79–91. doi:10.1007/978-3-642-31476-6_7. ISBN 978-3-642-31476-6. http://juser.fz-juelich.de/record/23267/files/FZJ-23267.pdf. 
  4. Wolf, Felix; Wylie, Brian J. N.; Ábrahám, Erika; Becker, Daniel; Frings, Wolfgang; Fürlinger, Karl; Geimer, Markus; Hermanns, Marc-André et al. (2008). "Usage of the SCALASCA toolset for scalable performance analysis of large-scale parallel applications". in Resch, Michael; Keller, Rainer; Himmler, Valentin et al. (in en). Tools for High Performance Computing. Berlin, Heidelberg: Springer. pp. 157–167. doi:10.1007/978-3-540-68564-7_10. ISBN 978-3-540-68564-7. https://link.springer.com/chapter/10.1007/978-3-540-68564-7_10. 
  5. "Scalable performance analysis of large-scale parallel applications". https://www.vi-hps.org/cms/upload/material/tw09/vi-hps-tw09-Scalasca_Overview.pdf. Retrieved 2020-11-14. 
  6. "Performance Analysis with Scalasca". https://www.olcf.ornl.gov/wp-content/uploads/2019/08/5_scalasca_day_1.pdf. Retrieved 2020-11-14. 

External links